2023-2024学年江苏省泰州市兴化市顾庄区达标名校中考二模数学试题含解析_第1页
2023-2024学年江苏省泰州市兴化市顾庄区达标名校中考二模数学试题含解析_第2页
2023-2024学年江苏省泰州市兴化市顾庄区达标名校中考二模数学试题含解析_第3页
2023-2024学年江苏省泰州市兴化市顾庄区达标名校中考二模数学试题含解析_第4页
2023-2024学年江苏省泰州市兴化市顾庄区达标名校中考二模数学试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年江苏省泰州市兴化市顾庄区达标名校中考二模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知二次函数(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程的两实数根是A.x1=1,x2=-1 B.x1=1,x2=2C.x1=1,x2=0 D.x1=1,x2=32.如图,菱形ABCD的对角线相交于点O,过点D作DE∥AC,且DE=AC,连接CE、OE,连接AE,交OD于点F,若AB=2,∠ABC=60°,则AE的长为()A. B. C. D.3.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根为0,则a值为()A.1 B.﹣1 C.±1 D.04.的负倒数是()A. B.- C.3 D.﹣35.用配方法解方程时,可将方程变形为()A. B. C. D.6.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b7.已知直线y=ax+b(a≠0)经过第一,二,四象限,那么直线y=bx-a一定不经过(

)A.第一象限B.第二象限C.第三象限D.第四象限8.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10° B.20° C.50° D.70°9.化简-32A.﹣23B.﹣23C.﹣610.如图,已知▱ABCD中,E是边AD的中点,BE交对角线AC于点F,那么S△AFE:S四边形FCDE为()A.1:3 B.1:4 C.1:5 D.1:611.如图,为等边三角形,要在外部取一点,使得和全等,下面是两名同学做法:()甲:①作的角平分线;②以为圆心,长为半径画弧,交于点,点即为所求;乙:①过点作平行于的直线;②过点作平行于的直线,交于点,点即为所求.A.两人都正确 B.两人都错误 C.甲正确,乙错误 D.甲错误,乙正确12.如图所示的四张扑克牌背面完全相同,洗匀后背面朝上,则从中任意翻开一张,牌面数字是3的倍数的概率为()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个多边形的内角和是,则它是______边形.14.如图,点A在反比例函数y=(x>0)上,以OA为边作正方形OABC,边AB交y轴于点P,若PA:PB=1:2,则正方形OABC的面积=_____.15.如图,矩形ABCD中,AD=5,∠CAB=30°,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是___________.16.阅读理解:引入新数,新数满足分配律,结合律,交换律.已知,那么________.17.点A(1,2),B(n,2)都在抛物线y=x2﹣4x+m上,则n=_____.18.已知关于x的方程x2﹣2x﹣m=0没有实数根,那么m的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.学生小红计划选修两门课程,请写出所有可能的选法;若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?20.(6分)已知:如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.求:(1)求∠CDB的度数;(2)当AD=2时,求对角线BD的长和梯形ABCD的面积.21.(6分)如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.22.(8分)九(3)班“2017年新年联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.(1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,求小芳获奖的概率.(2)如果小芳、小明都有翻两张牌的机会.小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们获奖的机会相等吗?通过树状图分析说明理由.23.(8分)某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40℃的开水,问他需要在什么时间段内接水.24.(10分)全民健身运动已成为一种时尚,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷内容包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分,运动形式ABCDE人数请你根据以上信息,回答下列问题:接受问卷调查的共有人,图表中的,.统计图中,类所对应的扇形的圆心角的度数是度.揭阳市环岛路是市民喜爱的运动场所之一,每天都有“暴走团”活动,若某社区约有人,请你估计一下该社区参加环岛路“暴走团”的人数.25.(10分)如图,分别延长▱ABCD的边到,使,连接EF,分别交于,连结求证:.26.(12分)如图,顶点为C的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,连接OC、OA、AB,已知OA=OB=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)过点C作CE⊥OB,垂足为E,点P为y轴上的动点,若以O、C、P为顶点的三角形与△AOE相似,求点P的坐标;(3)若将(2)的线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<120°),连接E′A、E′B,求E′A+E′B的最小值.27.(12分)在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F.(I)如图①,若∠F=50°,求∠BGF的大小;(II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】试题分析:∵二次函数(m为常数)的图象与x轴的一个交点为(1,0),∴.∴.故选B.2、C【解析】在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四边形OCED是平行四边形,∵AC⊥BD,∴平行四边形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC为等边三角形,∴AD=AB=AC=2,OA=AC=1,在矩形OCED中,由勾股定理得:CE=OD=,在Rt△ACE中,由勾股定理得:AE=;故选C.点睛:本题考查了菱形的性质,先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明四边形OCED是矩形,再根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.3、B【解析】

根据一元二次方程的定义和一元二次方程的解的定义得出:a﹣1≠0,a2﹣1=0,求出a的值即可.【详解】解:把x=0代入方程得:a2﹣1=0,解得:a=±1,∵(a﹣1)x2+x+a2﹣1=0是关于x的一元二次方程,∴a﹣1≠0,即a≠1,∴a的值是﹣1.故选:B.【点睛】本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a﹣1≠0,a2﹣1=0,不要漏掉对一元二次方程二次项系数不为0的考虑.4、D【解析】

根据倒数的定义,互为倒数的两数乘积为1,2×=1.再求出2的相反数即可解答.【详解】根据倒数的定义得:2×=1.

因此的负倒数是-2.

故选D.【点睛】本题考查了倒数,解题的关键是掌握倒数的概念.5、D【解析】

配方法一般步骤:将常数项移到等号右侧,左右两边同时加一次项系数一半的平方,配方即可.【详解】解:故选D.【点睛】本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.6、A【解析】

根据这块矩形较长的边长=边长为3a的正方形的边长-边长为2b的小正方形的边长+边长为2b的小正方形的边长的2倍代入数据即可.【详解】依题意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选A.【点睛】本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键.7、D【解析】

根据直线y=ax+b(a≠0)经过第一,二,四象限,可以判断a、b的正负,从而可以判断直线y=bx-a经过哪几个象限,不经过哪个象限,本题得以解决.【详解】∵直线y=ax+b(a≠0)经过第一,二,四象限,∴a<0,b>0,∴直线y=bx-a经过第一、二、三象限,不经过第四象限,故选D.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.8、B【解析】

要使木条a与b平行,那么∠1=∠2,从而可求出木条a至少旋转的度数.【详解】解:∵要使木条a与b平行,∴∠1=∠2,∴当∠1需变为50º,∴木条a至少旋转:70º-50º=20º.故选B.【点睛】本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.9、C【解析】试题解析:原式=-32故选C.考点:二次根式的乘除法.10、C【解析】

根据AE∥BC,E为AD中点,找到AF与FC的比,则可知△AEF面积与△FCE面积的比,同时因为△DEC面积=△AEC面积,则可知四边形FCDE面积与△AEF面积之间的关系.【详解】解:连接CE,∵AE∥BC,E为AD中点,

∴.

∴△FEC面积是△AEF面积的2倍.

设△AEF面积为x,则△AEC面积为3x,

∵E为AD中点,

∴△DEC面积=△AEC面积=3x.

∴四边形FCDE面积为1x,

所以S△AFE:S四边形FCDE为1:1.

故选:C.【点睛】本题考查相似三角形的判定和性质、平行四边形的性质,解题关键是通过线段的比得到三角形面积的关系.11、A【解析】

根据题意先画出相应的图形,然后进行推理论证即可得出结论.【详解】甲的作法如图一:∵为等边三角形,AD是的角平分线∴由甲的作法可知,在和中,故甲的作法正确;乙的作法如图二:在和中,故乙的作法正确;故选:A.【点睛】本题主要借助尺规作图考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.12、C【解析】

根据题意确定所有情况的数目,再确定符合条件的数目,根据概率的计算公式即可.【详解】解:由题意可知,共有4种情况,其中是3的倍数的有6和9,∴是3的倍数的概率,故答案为:C.【点睛】本题考查了概率的计算,解题的关键是熟知概率的计算公式.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、六【解析】试题分析:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=1.则这个正多边形的边数是六,故答案为六.考点:多边形内角与外角.14、1.【解析】

根据题意作出合适的辅助线,然后根据正方形的性质和反比例函数的性质,相似三角形的判定和性质、勾股定理可以求得AB的长.【详解】解:由题意可得:OA=AB,设AP=a,则BP=2a,OA=3a,设点A的坐标为(m,),作AE⊥x轴于点E.∵∠PAO=∠OEA=90°,∠POA+∠AOE=90°,∠AOE+∠OAE=90°,∴∠POA=∠OAE,∴△POA∽△OAE,∴=,即=,解得:m=1或m=﹣1(舍去),∴点A的坐标为(1,3),∴OA=,∴正方形OABC的面积=OA2=1.故答案为1.【点睛】本题考查了反比例函数图象点的坐标特征、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15、5【解析】

作点A关于直线CD的对称点E,作EP⊥AC于P,交CD于点Q,此时QA+QP最短,由QA+QP=QE+PQ=PE可知,求出PE即可解决问题.【详解】解:作点A关于直线CD的对称点E,作EP⊥AC于P,交CD于点Q.∵四边形ABCD是矩形,∴∠ADC=90°,∴DQ⊥AE,∵DE=AD,∴QE=QA,∴QA+QP=QE+QP=EP,∴此时QA+QP最短(垂线段最短),∵∠CAB=30°,∴∠DAC=60°,在Rt△APE中,∵∠APE=90°,AE=2AD=10,∴EP=AE•sin60°=10×=5.故答案为5.【点睛】本题考查矩形的性质、最短问题、锐角三角函数等知识,解题的关键是利用对称以及垂线段最短找到点P、Q的位置,属于中考常考题型.16、2【解析】

根据定义即可求出答案.【详解】由题意可知:原式=1-i2=1-(-1)=2故答案为2【点睛】本题考查新定义型运算,解题的关键是正确理解新定义.17、1【解析】

根据题意可以求得m的值和n的值,由A的坐标,可确定B的坐标,进而可以得到n的值.【详解】:∵点A(1,2),B(n,2)都在抛物线y=x2-4x+m上,

∴2=1-4+m2=n2-4n+m,

解得【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质求解.18、m<﹣1.【解析】

根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.【详解】∵关于x的方程x2﹣2x﹣m=0没有实数根,∴b2﹣4ac=(﹣2)2﹣4×1×(﹣m)<0,解得:m<﹣1,故答案为:m<﹣1.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)答案见解析;(2)【解析】分析:(1)直接列举出所有可能的结果即可.(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.详解:(1)学生小红计划选修两门课程,她所有可能的选法有:A书法、B阅读;A书法、C足球;A书法、D器乐;B阅读,C足球;B阅读,D器乐;C足球,D器乐.共有6种等可能的结果数;(2)画树状图为:共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4,所以他们两人恰好选修同一门课程的概率点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20、:(1)30º;(2).【解析】分析:(1)由已知条件易得∠ABC=∠A=60°,结合BD平分∠ABC和CD∥AB即可求得∠CDB=30°;(2)过点D作DH⊥AB于点H,则∠AHD=30°,由(1)可知∠BDA=∠DBC=30°,结合∠A=60°可得∠ADB=90°,∠ADH=30°,DC=BC=AD=2,由此可得AB=2AD=4,AH=,这样即可由梯形的面积公式求出梯形ABCD的面积了.详解:(1)∵在梯形ABCD中,DC∥AB,AD=BC,∠A=60°,∴∠CBA=∠A=60º,∵BD平分∠ABC,∴∠CDB=∠ABD=∠CBA=30º,(2)在△ACD中,∵∠ADB=180º–∠A–∠ABD=90º.∴BD=ADA=2tan60º=2.过点D作DH⊥AB,垂足为H,∴AH=ADA=2sin60º=.∵∠CDB=∠CBD=∠CBD=30º,∴DC=BC=AD=2∵AB=2AD=4∴.点睛:本题是一道应用等腰梯形的性质求解的题,熟悉等腰梯形的性质和直角三角形中30°的角所对直角边是斜边的一半及等腰三角形的判定,是正确解答本题的关键.21、(1)y=x2-4x+3.(2)当m=时,四边形AOPE面积最大,最大值为.(3)P点的坐标为:P1(,),P2(,),P3(,),P4(,).【解析】分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P的坐标;同理可得其他图形中点P的坐标.详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2-4x+3;(2)如图2,设P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四边形AOPE=S△AOE+S△POE,=×3×3+PG•AE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,∵-<0,∴当m=时,S有最大值是;(3)如图3,过P作MN⊥y轴,交y轴于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),则-m2+4m-3=2-m,解得:m=或,∴P的坐标为(,)或(,);如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则-m2+4m-3=m-2,解得:x=或;P的坐标为(,)或(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.22、(1);(2)他们获奖机会不相等,理由见解析.【解析】

(1)根据正面有2张笑脸、2张哭脸,直接利用概率公式求解即可求得答案;(2)根据题意分别列出表格,然后由表格即可求得所有等可能的结果与获奖的情况,再利用概率公式求解即可求得他们获奖的概率.【详解】(1)∵有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,∴获奖的概率是;故答案为;(2)他们获奖机会不相等,理由如下:小芳:笑1笑2哭1哭2笑1笑1,笑1笑2,笑1哭1,笑1哭2,笑1笑2笑1,笑2笑2,笑2哭1,笑2哭2,笑2哭1笑1,哭1笑2,哭1哭1,哭1哭2,哭1哭2笑1,哭2笑2,哭2哭1,哭2哭2,哭2∵共有16种等可能的结果,翻开的两张纸牌中只要出现笑脸的有12种情况,∴P(小芳获奖)=;小明:笑1笑2哭1哭2笑1笑2,笑1哭1,笑1哭2,笑1笑2笑1,笑2哭1,笑2哭2,笑2哭1笑1,哭1笑2,哭1哭2,哭1哭2笑1,哭2笑2,哭2哭1,哭2∵共有12种等可能的结果,翻开的两张纸牌中只要出现笑脸的有10种情况,∴P(小明获奖)=,∵P(小芳获奖)≠P(小明获奖),∴他们获奖的机会不相等.【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.23、(1)当0≤x≤8时,y=10x+20;当8<x≤a时,y=;(2)40;(3)要在7:50~8:10时间段内接水.【解析】

(1)当0≤x≤8时,设y=k1x+b,将(0,20),(8,100)的坐标分别代入y=k1x+b,即可求得k1、b的值,从而得一次函数的解析式;当8<x≤a时,设y=,将(8,100)的坐标代入y=,求得k2的值,即可得反比例函数的解析式;(2)把y=20代入反比例函数的解析式,即可求得a值;(3)把y=40代入反比例函数的解析式,求得对应x的值,根据想喝到不低于40℃的开水,结合函数图象求得x的取值范围,从而求得李老师接水的时间范围.【详解】解:(1)当0≤x≤8时,设y=k1x+b,将(0,20),(8,100)的坐标分别代入y=k1x+b,可求得k1=10,b=20∴当0≤x≤8时,y=10x+20.当8<x≤a时,设y=,将(8,100)的坐标代入y=,得k2=800∴当8<x≤a时,y=.综上,当0≤x≤8时,y=10x+20;当8<x≤a时,y=(2)将y=20代入y=,解得x=40,即a=40.(3)当y=40时,x==20∴要想喝到不低于40℃的开水,x需满足8≤x≤20,即李老师要在7:38到7:50之间接水.【点睛】本题主要考查了一次函数及反比例函数的应用题,是一个分段函数问题,分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.24、(1)150、45、36;(2)28.8°;(3)450人【解析】

(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;

(2)360°乘以A项目人数占总人数的比例可得;

(3)利用总人数乘以样本中C人数所占比例可得.【详解】解:(1)接受问卷调查的共有30÷20%=150人,m=150-(12+30+54+9)=45,∴n=36,

故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为故答案为:28.8°;(3)(人)答:估计该社区参加碧沙岗“暴走团”的大约有450人【点睛】本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.25、证明见解析【解析】分析:根据平行四边形的性质以及已知的条件得出△EGD和△FHB全等,从而得出DG=BH,从而说明AG和CH平行且相等,得出四边形AHCG为平行四边形,从而得出答案.详解:证明:在▱ABCD中,,,又

,≌,,,又,四边形AGCH为平行四边形,.点睛:本题主要考查的是平行四边形的性质以及判定定理,属于基础题型.解决这个问题的关键就是根据平行四边形的性质得出四边形AHCG为平行四边形.26、(1)y=x2﹣x;(2)点P坐标为(0,)或(0,);(3).【解析】

(1)根据AO=OB=2,∠AOB=120°,求出A点坐标,以及B点坐标,进而利用待定系数法求二次函数解析式;(2)∠EOC=30°,由OA=2OE,OC=,推出当OP=OC或OP′=2OC时,△POC与△AOE相似;(3)如图,取Q(,0).连接AQ,QE′.由△OE′Q∽△OBE′,推出,推出E′Q=BE′,推出AE′+BE′=AE′+QE′,由AE′+E′Q≥AQ,推出E′A+E′B的最小值就是线段AQ的长.【详解】(1)过点A作AH⊥x轴于点H,∵AO=OB=2,∠AOB=120°,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论