




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年吉林省大安县联考中考一模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙2.如图,已知,用尺规作图作.第一步的作法以点为圆心,任意长为半径画弧,分别交,于点,第二步的作法是()A.以点为圆心,长为半径画弧,与第1步所画的弧相交于点B.以点为圆心,长为半径画弧,与第1步所画的弧相交于点C.以点为圆心,长为半径画弧,与第1步所画的弧相交于点D.以点为圆心,长为半径画弧,与第1步所画的弧相交于点3.由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是()A. B. C. D.4.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12 B.48 C.72 D.965.已知,如图,AB是⊙O的直径,点D,C在⊙O上,连接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度数是()A.75° B.65° C.60° D.50°6.△ABC在网络中的位置如图所示,则cos∠ACB的值为()A. B. C. D.7.已知一个多边形的内角和是外角和的2倍,则此多边形的边数为()A.6 B.7 C.8 D.98.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需()A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元9.一元二次方程x2+x﹣2=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根10.小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数.小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在第1页写1,且之后每一页写的数均为他在前一页写的数加1.若小昱在某页写的数为101,则阿帆在该页写的数为何?()A.350 B.351 C.356 D.35811.在下列条件中,能够判定一个四边形是平行四边形的是()A.一组对边平行,另一组对边相等B.一组对边相等,一组对角相等C.一组对边平行,一条对角线平分另一条对角线D.一组对边相等,一条对角线平分另一条对角线12.不等式组的解集在数轴上表示为()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k的值为_____.14.如图,在平面直角坐标系中,函数y=x和y=﹣x的图象分别为直线l1,l2,过点A1(1,﹣)作x轴的垂线交11于点A2,过点A2作y轴的垂线交l2于点A3,过点A3作x轴的垂线交l1于点A4,过点A4作y轴的垂线交l2于点A5,…依次进行下去,则点A2018的横坐标为_____.15.分解因式:ax2﹣2ax+a=___________.16.小明为了统计自己家的月平均用电量,做了如下记录并制成了表格,通过计算分析小明得出一个结论:小明家的月平均用电量为330千瓦时.请判断小明得到的结论是否合理并且说明理由______.月份六月七月八月用电量(千瓦时)290340360月平均用电量(千瓦时)33017.如图,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_________.18.如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成2:1两部分,则x的值为__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某种商品每天的销售利润元,销售单价元,间满足函数关系式:,其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于21元?20.(6分)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).求抛物线的函数解析式;点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.21.(6分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:调查了________名学生;补全条形统计图;在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学和2位女同学,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.22.(8分)阅读下列材料:数学课上老师布置一道作图题:已知:直线l和l外一点P.求作:过点P的直线m,使得m∥l.小东的作法如下:作法:如图2,(1)在直线l上任取点A,连接PA;(2)以点A为圓心,适当长为半径作弧,分别交线段PA于点B,直线l于点C;(3)以点P为圆心,AB长为半径作弧DQ,交线段PA于点D;(4)以点D为圆心,BC长为半径作弧,交弧DQ于点E,作直线PE.所以直线PE就是所求作的直线m.老师说:“小东的作法是正确的.”请回答:小东的作图依据是________.23.(8分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC,AB于点E,F.(1)若∠B=30°,求证:以A,O,D,E为顶点的四边形是菱形;(2)填空:若AC=6,AB=10,连接AD,则⊙O的半径为,AD的长为.24.(10分)已知,抛物线L:y=x2+bx+c与x轴交于点A和点B(-3,0),与y轴交于点C(0,3).(1)求抛物线L的顶点坐标和A点坐标.(2)如何平移抛物线L得到抛物线L1,使得平移后的抛物线L1的顶点与抛物线L的顶点关于原点对称?(3)将抛物线L平移,使其经过点C得到抛物线L2,点P(m,n)(m>0)是抛物线L2上的一点,是否存在点P,使得△PAC为等腰直角三角形,若存在,请直接写出抛物线L2的表达式,若不存在,请说明理由.25.(10分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?26.(12分)为了解某校初二学生每周上网的时间,两位学生进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间;小杰从全校400名初二学生中随机抽取了40名学生,调查了每周上网的时间.小丽与小杰整理各自样本数据,如下表所示.时间段(小时/周)小丽抽样(人数)小杰抽样(人数)0~16221~210102~31663~482(1)你认为哪位学生抽取的样本不合理?请说明理由.专家建议每周上网2小时以上(含2小时)的学生应适当减少上网的时间,估计该校全体初二学生中有多少名学生应适当减少上网的时间.27.(12分)计算:2sin60°+|3﹣|+(π﹣2)0﹣()﹣1
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.详解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选B.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2、D【解析】
根据作一个角等于已知角的作法即可得出结论.【详解】解:用尺规作图作∠AOC=2∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,
第二步的作图痕迹②的作法是以点F为圆心,EF长为半径画弧.
故选:D.【点睛】本题考查的是作图-基本作图,熟知作一个角等于已知角的步骤是解答此题的关键.3、A【解析】
由三视图的俯视图,从左到右依次找到最高层数,再由主视图和俯视图之间的关系可知,最高层高度即为主视图高度.【详解】解:几何体从左到右的最高层数依次为1,2,3,所以主视图从左到右的层数应该为1,2,3,故选A.【点睛】本题考查了三视图的简单性质,属于简单题,熟悉三视图的概念,主视图和俯视图之间的关系是解题关键.4、C【解析】
解:根据图形,身高在169.5cm~174.5cm之间的人数的百分比为:,∴该校男生的身高在169.5cm~174.5cm之间的人数有300×24%=72(人).故选C.5、B【解析】因为AB是⊙O的直径,所以求得∠ADB=90°,进而求得∠B的度数,又因为∠B=∠C,所以∠C的度数可求出.解:∵AB是⊙O的直径,
∴∠ADB=90°.
∵∠BAD=25°,
∴∠B=65°,
∴∠C=∠B=65°(同弧所对的圆周角相等).
故选B.
6、B【解析】作AD⊥BC的延长线于点D,如图所示:在Rt△ADC中,BD=AD,则AB=BD.cos∠ACB=,故选B.7、A【解析】试题分析:根据多边形的外角和是310°,即可求得多边形的内角的度数为720°,依据多边形的内角和公式列方程即可得(n﹣2)180°=720°,解得:n=1.故选A.考点:多边形的内角和定理以及多边形的外角和定理8、C【解析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故选C.【点睛】本题主要考查列代数式,总价=单价乘数量.9、A【解析】∵∆=12-4×1×(-2)=9>0,∴方程有两个不相等的实数根.故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.10、B【解析】
根据题意确定出小昱和阿帆所写的数字,设小昱所写的第n个数为101,根据规律确定出n的值,即可确定出阿帆在该页写的数.【详解】解:小昱所写的数为1,3,5,1,…,101,…;阿帆所写的数为1,8,15,22,…,设小昱所写的第n个数为101,根据题意得:101=1+(n-1)×2,整理得:2(n-1)=100,即n-1=50,解得:n=51,则阿帆所写的第51个数为1+(51-1)×1=1+50×1=1+350=2.故选B.【点睛】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.11、C【解析】A、错误.这个四边形有可能是等腰梯形.B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C.12、A【解析】
分别求得不等式组中两个不等式的解集,再确定不等式组的解集,表示在数轴上即可.【详解】解不等式①得,x>1;解不等式②得,x>2;∴不等式组的解集为:x≥2,在数轴上表示为:故选A.【点睛】本题考查了一元一次不等式组的解法,正确求得不等式组中每个不等式的解集是解决问题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解析】
根据题意得出△AOD∽△OCE,进而得出,即可得出k=EC×EO=1.【详解】解:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,∵连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,∴CO⊥AB,∠CAB=10°,则∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=tan60°=,∴==1,∵点A是双曲线y=-在第二象限分支上的一个动点,∴S△AOD=×|xy|=,∴S△EOC=,即×OE×CE=,∴k=OE×CE=1,故答案为1.【点睛】本题主要考查了反比例函数与一次函数的交点以及相似三角形的判定与性质,正确添加辅助线,得出△AOD∽△OCE是解题关键.14、1【解析】
根据题意可以发现题目中各点的坐标变化规律,从而可以解答本题.【详解】解:由题意可得,A1(1,-),A2(1,1),A3(-2,1),A4(-2,-2),A5(4,-2),…,∵2018÷4=504…2,2018÷2=1009,∴点A2018的横坐标为:1,故答案为1.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,找出题目中点的横坐标的变化规律.15、a(x-1)1.【解析】
先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【详解】解:ax1-1ax+a,
=a(x1-1x+1),
=a(x-1)1.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16、不合理,样本数据不具有代表性【解析】
根据表中所取的样本不具有代表性即可得到结论.【详解】不合理,样本数据不具有代表性(例:夏季高峰用电量大不能代表年平均用电量).故答案为:不合理,样本数据不具有代表性(例:夏季高峰用电量大不能代表年平均用电量).【点睛】本题考查了统计表,认真分析表中数据是解题的关键.17、.【解析】
延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.运用勾股定理求解.【详解】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.∵AC=6,CF=1,∴AF=AC-CF=4,∵∠A=60°,∠AMF=90°,∴∠AFM=30°,∴AM=AF=1,∴FM==1,∵FP=FC=1,∴PM=MF-PF=1-1,∴点P到边AB距离的最小值是1-1.故答案为:1-1.【点睛】本题考查了翻折变换,涉及到的知识点有直角三角形两锐角互余、勾股定理等,解题的关键是确定出点P的位置.18、或﹣.【解析】
试题分析:当点F在OB上时,设EF交CD于点P,可求点P的坐标为(,1).则AF+AD+DP=3+x,CP+BC+BF=3﹣x,由题意可得:3+x=2(3﹣x),解得:x=.由对称性可求当点F在OA上时,x=﹣,故满足题意的x的值为或﹣.故答案是或﹣.【点睛】考点:动点问题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)10,1;(2).【解析】
(1)将点代入中,求出函数解析式,再根据二次函数的性质求出最大值即可;(2)求出对称轴为直线,可知点关于对称轴的对称点是,再根据图象判断出x的取值范围即可.【详解】解:(1)图象过点,,解得..的顶点坐标为.,∴当时,最大=1.答:该商品的销售单价为10元时,每天的销售利润最大,最大利润为1元.(2)∵函数图象的对称轴为直线,可知点关于对称轴的对称点是,又∵函数图象开口向下,∴当时,.答:销售单价不少于8元且不超过12元时,该种商品每天的销售利润不低于21元.【点睛】本题考查了待定系数法求二次函数解析式以及二次函数的性质,解题的关键是熟悉待定系数法以及二次函数的性质.20、(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P点坐标(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).【解析】
(1)将A,B两点坐标代入解析式,求出b,c值,即可得到抛物线解析式;(2)先根据解析式求出C点坐标,及顶点E的坐标,设点D的坐标为(0,m),作EF⊥y轴于点F,利用勾股定理表示出DC,DE的长.再建立相等关系式求出m值,进而求出D点坐标;(3)先根据边角边证明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后当以C、D、P为顶点的三角形与△DOC相似时,根据对应边不同进行分类讨论:①当OC与CD是对应边时,有比例式,能求出DP的值,又因为DE=DC,所以过点P作PG⊥y轴于点G,利用平行线分线段成比例定理即可求出DG,PG的长度,根据点P在点D的左边和右边,得到符合条件的两个P点坐标;②当OC与DP是对应边时,有比例式,易求出DP,仍过点P作PG⊥y轴于点G,利用比例式求出DG,PG的长度,然后根据点P在点D的左边和右边,得到符合条件的两个P点坐标;这样,直线DE上根据对应边不同,点P所在位置不同,就得到了符合条件的4个P点坐标.【详解】解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(0,﹣3),∴,解得,故抛物线的函数解析式为y=x2﹣2x﹣3;(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则点C的坐标为(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴点E坐标为(1,﹣4),设点D的坐标为(0,m),作EF⊥y轴于点F(如下图),∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,∵DC=DE,∴m2+9=m2+8m+16+1,解得m=﹣1,∴点D的坐标为(0,﹣1);(3)∵点C(3,0),D(0,﹣1),E(1,﹣4),∴CO=DF=3,DO=EF=1,根据勾股定理,CD===,在△COD和△DFE中,∵,∴△COD≌△DFE(SAS),∴∠EDF=∠DCO,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD⊥DE,①当OC与CD是对应边时,∵△DOC∽△PDC,∴,即=,解得DP=,过点P作PG⊥y轴于点G,则,即,解得DG=1,PG=,当点P在点D的左边时,OG=DG﹣DO=1﹣1=0,所以点P(﹣,0),当点P在点D的右边时,OG=DO+DG=1+1=2,所以,点P(,﹣2);②当OC与DP是对应边时,∵△DOC∽△CDP,∴,即=,解得DP=3,过点P作PG⊥y轴于点G,则,即,解得DG=9,PG=3,当点P在点D的左边时,OG=DG﹣OD=9﹣1=8,所以,点P的坐标是(﹣3,8),当点P在点D的右边时,OG=OD+DG=1+9=10,所以,点P的坐标是(3,﹣10),综上所述,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,满足条件的点P共有4个,其坐标分别为(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).考点:1.相似三角形的判定与性质;2.二次函数动点问题;3.一次函数与二次函数综合题.21、50见解析(3)115.2°(4)【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360º×它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=15÷30%=50(名)故答案为50;(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,故答案为115.2°;(4)画树状图如图.由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)==.点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.22、内错角相等,两直线平行【解析】
根据内错角相等,两直线平行即可判断.【详解】∵∠EPA=∠CAP,∴m∥l(内错角相等,两直线平行).故答案为:内错角相等,两直线平行.【点睛】本题考查了作图﹣复杂作图,平行线的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.23、(1)见解析;(2)【解析】
(1)先通过证明△AOE为等边三角形,得出AE=OD,再根据“同位角相等,两直线平行”证明AE//OD,从而证得四边形AODE是平行四边形,再根据“一组邻边相等的平行四边形为菱形”即可得证.(2)利用在Rt△OBD中,sin∠B==可得出半径长度,在Rt△ODB中BD=,可求得BD的长,由CD=CB﹣BD可得CD的长,在RT△ACD中,AD=,即可求出AD长度.【详解】解:(1)证明:连接OE、ED、OD,在Rt△ABC中,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AEO是等边三角形,∴AE=OE=AO∵OD=OA,∴AE=OD∵BC是圆O的切线,OD是半径,∴∠ODB=90°,又∵∠C=90°∴AC∥OD,又∵AE=OD∴四边形AODE是平行四边形,∵OD=OA∴四边形AODE是菱形.(2)在Rt△ABC中,∵AC=6,AB=10,∴sin∠B==,BC=8∵BC是圆O的切线,OD是半径,∴∠ODB=90°,在Rt△OBD中,sin∠B==,∴OB=OD∵AO+OB=AB=10,∴OD+OD=10∴OD=∴OB=OD=∴BD==5∴CD=CB﹣BD=3∴AD===3.【点睛】本题主要考查圆中的计算问题、菱形以及相似三角形的判定与性质24、(1)顶点(-2,-1)A(-1,0);(2)y=(x-2)2+1;(3)y=x2-x+3,,y=x2-4x+3,.【解析】
(1)将点B和点C代入求出抛物线L即可求解.(2)将抛物线L化顶点式求出顶点再根据关于原点对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高二下学期英语跨学科教学计划
- 2025-2030中国干手器行业市场发展现状及发展趋势与投资风险研究报告
- 2025-2030中国宠物罐头行业市场发展现状及前景趋势与投资研究报告
- 基于双注意力机制的CEEMDAN-BiGRU-TCN短期电力负荷预测研究
- 2025-2030中国天然营养食品行业市场发展态势分析及发展趋势与投资战略研究报告
- 教师培训的心得体会与反思
- 一年级下学期语文课堂活动安排
- 九年级英语跨学科项目计划
- 离职证明书员工离职证明说明离职原因(7篇)
- 苯嘧磺草胺在高粱上的残留及转运研究
- 西方文明史导论智慧树知到期末考试答案2024年
- JBT 11699-2013 高处作业吊篮安装、拆卸、使用技术规程
- IATF16949质量管理体系过程风险和机遇评估分析表
- 知识星球行业报告
- 【课件】第15课+权力与理性-17、18世纪西方美术+课件-高中美术人教版(2019)美术鉴赏
- 光电技术(第5版) 习题解答 王庆有
- 仓库货物先进先出管理培训教程培训课件
- 什么是数学:对思想和方法的基本研究
- 家长会课件:初三迎接中考家长会课件
- 金属非金属地下矿山安全避险“六大系统”课件
- TCSAE 97-2019 汽车紧固件锌铝涂层技术条件
评论
0/150
提交评论