2025届吉林省白山一中数学高一下期末检测试题含解析_第1页
2025届吉林省白山一中数学高一下期末检测试题含解析_第2页
2025届吉林省白山一中数学高一下期末检测试题含解析_第3页
2025届吉林省白山一中数学高一下期末检测试题含解析_第4页
2025届吉林省白山一中数学高一下期末检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届吉林省白山一中数学高一下期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数在处取最小值,则等于()A.3 B. C. D.42.若三棱锥中,,,,且,,,则该三棱锥外接球的表面积为()A. B. C. D.3.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的()A.5 B.4 C.3 D.94.若样本的平均数为10,其方差为2,则对于样本的下列结论正确的是A.平均数为20,方差为8 B.平均数为20,方差为10C.平均数为21,方差为8 D.平均数为21,方差为105.在中,,,,则的面积为A. B. C. D.6.已知,则的值为()A. B.1 C. D.7.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了了解该地区中小学生的近视形成原因,按学段用分层抽样的方法抽取该地区的学生进行调查,则样本容量和抽取的初中生中近视人数分别为()A., B., C., D.,8.直线x-2y+2=0关于直线x=1对称的直线方程是()A.x+2y-4=0 B.2x+y-1=0 C.2x+y-3=0 D.2x+y-4=09.设点是函数图象上的任意一点,点满足,则的最小值为()A. B. C. D.10.下列函数中,既是偶函数又在区间上单调递减的是(

)A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.将二进制数110转化为十进制数的结果是_____________.12.已知是第二象限角,且,且______.13.一水平位置的平面图形的斜二测直观图是一个底平行于轴,底角为,两腰和上底长均为1的等腰梯形,则这个平面图形的面积是.14.已知数列为等比数列,,,则数列的公比为__________.15.已知a,b,x均为正数,且a>b,则____(填“>”、“<”或“=”).16.函数,的值域为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图1所示,在四边形中,,且,,.(1)求的面积;(2)若,求的长.图1图218.直线经过点,且与圆相交与两点,截得的弦长为,求的方程.19.已知数列的前项和为,且满足.(1)求证:数列是等比数列;(2)设,数列的前项和为,求证:.20.已知向量,.(1)当时,求的值;(2)设函数,已知在中,内角、、的对边分别为、、,若,,,求的取值范围.21.已知角、的顶点在平面直角坐标系的原点,始边与轴正半轴重合,且角的终边与单位圆(圆心在原点,半径为1的圆)的交点位于第二象限,角的终边和单位圆的交点位于第三象限,若点的横坐标为,点的纵坐标为.(1)求、的值;(2)若,求的值.(结果用反三角函数值表示)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

将函数的解析式配凑为,再利用基本不等式求出该函数的最小值,利用等号成立得出相应的值,可得出的值.【详解】当时,,则,当且仅当时,即当时,等号成立,因此,,故选A.【点睛】本题考查基本不等式等号成立的条件,利用基本不等式要对代数式进行配凑,注意“一正、二定、三相等”这三个条件的应用,考查计算能力,属于中等题.2、B【解析】

将棱锥补成长方体,根据长方体的外接球的求解方法法得到结果.【详解】根据题意得到棱锥的三条侧棱两两垂直,可以以三条侧棱为长方体的楞,该三棱锥补成长方体,两者的外接球是同一个,外接球的球心是长方体的体对角线的中点处。设球的半径为R,则表面积为故答案为:B.【点睛】本题考查了球与几何体的问题,是高考中的重点问题,要有一定的空间想象能力,这样才能找准关系,得到结果,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.3、B【解析】

由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出,分析循环中各变量的变化情况,可得答案.【详解】当时,,,满足进行循环的条件;当时,,,满足进行循环的条件;当时,,,满足进行循环的条件;当时,,,不满足进行循环的条件;故选:B【点睛】本题主要考查程序框图,解题的关键是读懂流程图各个变量的变化情况,属于基础题.4、A【解析】

利用和差积的平均数和方差公式解答.【详解】由题得样本的平均数为,方差为.故选A【点睛】本题主要考查平均数和方差的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.5、C【解析】

利用三角形中的正弦定理求出角B,利用三角形内角和求出角C,再利用三角形的面积公式求出三角形的面积,求得结果.【详解】因为中,,,,由正弦定理得:,所以,所以,所以,所以,故选C.【点睛】该题所考查的是有关三角形面积的求解问题,在解题的过程中,需要注意根据题中所给的条件,应用正弦定理求得,从而求得,之后应用三角形面积公式求得结果.6、B【解析】

化为齐次分式,分子分母同除以,化弦为切,即可求解.【详解】.故选:B.【点睛】本题考查已知三角函数值求值,通过齐次分式化弦为切,属于基础题.7、A【解析】

根据分层抽样的定义建立比例关系即可得到结论。【详解】由图1得样本容量为,抽取的初中生人数为人,则初中生近视人数为人,故选.【点睛】本题主要考查分层抽样的应用。8、A【解析】

所求直线的斜率与直线x-2y+2=0的斜率互为相反数,且在x=1处有公共点,求解即可。【详解】直线x-2y+2=0与直线x=1的交点为P1,3因为直线x-2y+2=0的斜率为12,所以所求直线的斜率为-故所求直线方程为y-32=-故答案为A.【点睛】本题考查了直线的斜率,直线的方程,直线关于直线的对称问题,属于基础题。9、B【解析】

函数表示圆位于x轴下面的部分.利用点到直线的距离公式,求出最小值.【详解】函数化简得.圆心坐标,半径为2.所以【点睛】本题考查点到直线的距离公式,属于基础题.10、D【解析】

利用函数的奇偶性和单调性,逐一判断各个选项中的函数的奇偶性和单调性,进而得出结论.【详解】由于函数是奇函数,不是偶函数,故排除A;由于函数是偶函数,但它在区间上单调递增,故排除B;由于函数是奇函数,不是偶函数,故排除C;由于函数是偶函数,且满足在区间上单调递减,故满足条件.故答案为:D【点睛】本题主要考查了函数的奇偶性的判定及应用,其中解答中熟记函数的奇偶性的定义和判定方法,以及基本初等函数的奇偶性是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、6【解析】

将二进制数从右开始,第一位数字乘以2的0次幂,第二位数字乘以2的1次幂,以此类推,进行计算即可.【详解】,故答案为:6.【点睛】本题考查进位制,解题关键是了解不同进制数之间的换算法则,属于基础题.12、【解析】

利用同角三角函数的基本关系求出,然后利用诱导公式可求出的值.【详解】是第二象限角,则,由诱导公式可得.故答案为:.【点睛】本题考查利用同角三角函数的基本关系和诱导公式求值,考查计算能力,属于基础题.13、【解析】如图过点作,,则四边形是一个内角为45°的平行四边形且,中,,则对应可得四边形是矩形且,是直角三角形,.所以14、【解析】

设等比数列的公比为,由可求出的值.【详解】设等比数列的公比为,则,,因此,数列的公比为,故答案为:.【点睛】本题考查等比数列公比的计算,在等比数列的问题中,通常将数列中的项用首项和公比表示,建立方程组来求解,考查运算求解能力,属于基础题.15、<【解析】

直接利用作差比较法解答.【详解】由题得,因为a>0,x+a>0,b-a<0,x>0,所以所以.故答案为<【点睛】本题主要考查作差比较法,意在考查学生对这些知识的理解掌握水平和分析推理能力.16、【解析】

先求的值域,再求的值域即可.【详解】因为,故,故.故答案为:【点睛】本题主要考查了余弦函数的值域与反三角函数的值域等,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)利用已知条件求出D角的正弦函数值,然后求△ACD的面积;

(2)利用余弦定理求出AC,通过,利用余弦定理求解AB的长.【详解】(1)因为,,所以,又,所以,所以.(2)由余弦定理可得,因为,所以,解得.【点睛】本题考查余弦定理以及正弦定理的应用,基本知识的考查,考查学生分析解决问题的能力,属于中档题.18、或【解析】

直线截圆得的弦长为,结合圆的半径为5,利用勾股定理可得圆心到直线的距离,再利用点到直线的距离公式列方程求出直线斜率,由点斜式可得结果.【详解】设直线的方程为,即,因为圆的半径为5,截得的弦长为所以圆心到直线的距离,即或,∴所求直线的方程为或.【点睛】本题主要考查点到直线距离公式以及圆的弦长的求法,求圆的弦长有两种方法:一是利用弦长公式,结合韦达定理求解;二是利用半弦长,弦心距,圆半径构成直角三角形,利用勾股定理求解.19、(1)见证明;(2)见证明【解析】

(1)由,得,两式作差可得,利用等比数列的定义,即可作出证明;(2)由(1)可得,得到,利用裂项法求得数列的和,即可作出证明.【详解】(1)证明:由,得,两式作差可得:,即,即,又,得,所以数列是首项为,公比为的等比数列;(2)由(1)可得,数列的通项公式为,又由,所以.所以.【点睛】本题主要考查了等比数列的定义,以及数列“裂项法”求和的应用,其中解答中熟记等比数列的定义和通项,以及合理利用数列的“裂项法”求得数列的前n项和是解答的关键,着重考查了推理与运算能力,属于基础题.20、(1);(2)【解析】

(1)由共线向量的坐标运算化简可得,将化切后代入即可(2)利用向量的坐标运算化简,利用正弦

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论