版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省苏州市吴江汾湖高级中学2025届数学高一下期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若过点,的直线与直线平行,则的值为()A.1 B.4 C.1或3 D.1或42.一个平面截一球得到直径为6的圆面,球心到这个圆面的距离为4,则这个球的体积为()A. B. C. D.3.设是上的偶函数,且在上是减函数,若且,则()A. B.C. D.与大小不确定4.已知向量,则与夹角的大小为()A. B. C. D.5.等比数列中,,则A.20 B.16 C.15 D.106.在中,,,则()A.或 B. C. D.7.若正实数,满足,则有下列结论:①;②;③;④.其中正确结论的个数为()A.1 B.2 C.3 D.48.已知函数,则()A. B. C. D.9.下列各角中与角终边相同的角是A. B. C. D.10.已知函数,,若成立,则的最小值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的定义域为,则实数的取值范围为_____.12.已知正实数满足,则的最大值为_______.13.在等差数列中,若,则______.14.设为,的反函数,则的值域为______.15.设是等差数列的前项和,若,则___________.16.直线的倾斜角的大小是_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足:(1)设数列满足,求的前项和:(2)证明数列是等差数列,并求其通项公式;18.若是公差不为0的等差数列的前n项和,且成等比数列.(1)求数列的公比.(2)若,求的通项公式.19.如图,某住宅小区的平面图呈圆心角为的扇形,小区的两个出入口设置在点及点处,且小区里有一条平行于的小路.(1)已知某人从沿走到用了分钟,从沿走到用了分钟,若此人步行的速度为每分钟米,求该扇形的半径的长(精确到米)(2)若该扇形的半径为,已知某老人散步,从沿走到,再从沿走到,试确定的位置,使老人散步路线最长.20.如图,在平行四边形中,,,,与的夹角为.(1)若,求、的值;(2)求的值;(3)求与的夹角的余弦值.21.已知.(1)当时,求数列前n项和;(用和n表示);(2)求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
首先设一条与已知直线平行的直线,点,代入直线方程即可求出的值.【详解】设与直线平行的直线:,点,代入直线方程,有.故选:A.【点睛】本题考查了利用直线的平行关系求参数,属于基础题.注意直线与直线在时相互平行.2、C【解析】
过球心作垂直圆面于.连接与圆面上一点构造出直角三角形再计算球的半径即可.【详解】如图,过球心作垂直圆面于,连接与圆面上一点.则.故球的体积为.故选:C【点睛】本题主要考查了球中构造直角三角形求解半径的方法等.属于基础题.3、A【解析】试题分析:由是上的偶函数,且在上是减函数,所以在上是增函数,因为且,所以,所以,又因为,所以,故选A.考点:函数奇偶性与单调性的综合应用.【方法点晴】本题主要考查了函数的单调性与奇偶性的综合应用,其中解答中涉及函数的单调性和函数奇偶性的应用等知识点,本题的解答中先利用偶函数的图象的对称性得出在上是增函数,然后在利用题设条案件把自变量转化到区间上是解答的关键,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,试题有一定的难度,属于中档试题.4、D【解析】
。分别求出,,,利用即可得出答案.【详解】设与的夹角为故选:D【点睛】本题主要考查了求向量的夹角,属于基础题.5、B【解析】试题分析:由等比中项的性质可得:,故选择B考点:等比中项的性质6、C【解析】
由正弦定理计算即可。【详解】由题根据正弦定理可得即,解得,所以为或,又因为,所以为故选C.【点睛】本题考查正弦定理,属于简单题。7、C【解析】
根据不等式的基本性质,逐项推理判断,即可求解,得到答案.【详解】由题意,正实数是正数,且,①中,可得,所以是错误的;②中,由,可得是正确的;③中,根据实数的性质,可得是正确的;④中,因为,所以是正确的,故选C.【点睛】本题主要考查了不等式的性质的应用,其中解答中熟记不等式的基本性质,合理推理是解答的关键,着重考查了推理与运算能力,属于基础题.8、A【解析】
由题意结合函数的解析式分别求得的值,然后求解两者之差即可.【详解】由题意可得:,,则.故选:A.【点睛】求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.9、B【解析】
根据终边相同角的概念,即可判断出结果.【详解】因为,所以与是终边相同的角.故选B【点睛】本题主要考查终边相同的角,熟记有关概念即可,属于基础题型.10、B【解析】,则,所以,则,易知,,则在单调递减,单调递增,所以,故选B。点睛:本题考查导数的综合应用。利用导数求函数的极值和最值是导数综合应用题型中的常见考法。通过求导,首先观察得到导函数的极值点,利用图象判断出单调增减区间,得到最值。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据对数的真数对于0,再结合不等式即可解决.【详解】函数的定义域为等价于对于任意的实数,恒成立当时成立当时,等价于综上可得【点睛】本题主要考查了函数的定义域以及不等式恒成立的问题,函数的定义域常考的由1、,2、,3、.属于基础题.12、【解析】
对所求式子平边平方,再将代入,从而将问题转化为求【详解】∵∵,∴,∴,等号成立当且仅当.故答案为:.【点睛】本题考查条件等式下利用基本不等式求最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意等号成立的条件.13、【解析】
利用等差中项的性质可求出的值.【详解】由等差中项的性质可得,解得.故答案为:.【点睛】本题考查利用等差中项的性质求项的值,考查计算能力,属于基础题.14、【解析】
求出原函数的值域可得出其反函数的定义域,取交集可得出函数的定义域,再由函数的单调性可求出该函数的值域.【详解】函数在上为增函数,则函数的值域为,所以,函数的定义域为.函数的定义域为,由于函数与函数单调性相同,可知,函数在上为增函数.当时,函数取得最小值;当时,函数取得最大值.因此,函数的值域为.故答案为:.【点睛】本题考查函数值域的求解,考查函数单调性的应用,明确两个互为反函数的两个函数具有相同的单调性是解题的关键,考查分析问题和解决问题的能力,属于中等题.15、1.【解析】
由已知结合等差数列的性质求得,代入等差数列的前项和得答案.【详解】解:在等差数列中,由,得,,则,故答案为:1.【点睛】本题主要考查等差数列的通项公式,考查等差数列的性质,考查了等差数列前项和的求法,属于基础题.16、【解析】试题分析:由题意,即,∴.考点:直线的倾斜角.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析,【解析】
(1)令n=1,即可求出,计算出,利用错位相减求出。(2)利用公式化简即可得证。再利用,求出公差,即可写出通项公式。【详解】解:在中,令,得,所以,①,②①②得化简得由得:,两式相减整理得:从而有,相减得:即故数列为等差数列,又,故公差【点睛】本题主要考查利用错位相减法求等差乘等比数列的前n项的和,属于基础题。18、(1)公比为4;(2)【解析】
(1)设,然后根据相关条件去计算公比;(2)由(1)的结论计算的表达式,然后再计算的通项公式.【详解】(1)设.∴,∴,.∴,即的公比为4(2)∵,∴,即,当时,,当时,符合,∴【点睛】(1)已知等差数列的三项成等比数列,可利用首项和公差将等式列出,找到首项和公差的关系;(2)利用计算通项公式时,要注意验证的情况.19、(1)445米;(2)在弧的中点处【解析】
(1)假设该扇形的半径为米,在中,利用余弦定理求解;(2)设设,在中根据正弦定理,用和表示和,进而利用和差公式和辅助角公式化简,再根据三角函数的性质求最值.【详解】(1)方法一:设该扇形的半径为米,连接.由题意,得(米),(米),在中,即,解得(米)方法二:连接,作,交于,由题意,得(米),(米),,在中,.(米)..在直角中,(米),(米).(2)连接,设,在中,由正弦定理得:,于是,则,所以当时,最大为,此时在弧的中点处.【点睛】本题考查正弦定理,余弦定理的实际应用,结合了三角函数的化简与求三角函数的最值.20、(1),;(2);(3).【解析】试题分析:(1)根据向量的运算有,可知,由模长即可求得、的值;(2)先求得向量,再根据向量的数量积及便可求得;(3)由前面的求解可得及,可利用求得向量夹角的余弦值.试题解析:(1)因为,所以即.(2)由向量的运算法则知,,所以.(3)因为与的夹角为,所以与的夹角为,又,所以..设与的夹角为,可得.所以与的夹角的余弦值为.考点:向量的运算.【思路点睛】本题主要考查向量的运算及单位向量,平面任一向量都可用两个不共线的单位向量来表示,其对应坐标就是沿单位向量方向上向量的模长;而对于向量的数量积,在得知模长及夹角的情况下,可以用两向量模长与夹角余弦三者的乘积来计算,也可转化为单位向量的数量积进行求解;而向量夹角的余弦值则经
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 包含2024年度贷款条款的房屋买卖合同2篇
- 物理课件讲义
- 煤矿生产经营长期承包协议
- 2024年度东莞市教育培训合作协议2篇
- 2024年度原材料供应与成品购买综合协议2篇
- 葡萄酒酿造工艺
- 《性激素治疗TH》课件
- 脚手架租赁合同
- 人教版九年级化学第十单元酸和碱1常见的酸和碱课时3常见的碱碱的性质教学课件
- 2024年度二手住宅按揭贷款合同3篇
- 数独四宫格3-5岁儿童练习题-简单版
- 施工平面布置图
- 企业融资台账格式表样
- 翅片套铜管式换热器换热面积自动计算
- 井下轨道铺设标准
- 自行车道设计说明
- 六年级英语家长会.ppt
- 人事谈话记录表模板
- 环卫装备环卫服务企业发展战略和经营计划
- 内镜室QCCppt课件
- 关于爱的排比句11篇
评论
0/150
提交评论