福建省福州市2025届数学高一下期末统考试题含解析_第1页
福建省福州市2025届数学高一下期末统考试题含解析_第2页
福建省福州市2025届数学高一下期末统考试题含解析_第3页
福建省福州市2025届数学高一下期末统考试题含解析_第4页
福建省福州市2025届数学高一下期末统考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省福州市2025届数学高一下期末统考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.把一个已知圆锥截成个圆台和一个小圆锥,已知圆台的上、下底面半径之比为,母线长为,则己知圆锥的母线长为().A. B. C. D.2.在等差数列中,若,则的值为()A.15 B.21 C.24 D.183.在中,角所对的边分别为.若,,,则等于()A. B. C. D.4.已知函数在区间上是增函数,且在区间上恰好取得一次最大值为2,则的取值范围是()A. B. C. D.5.方程的解所在的区间为()A. B.C. D.6.如图,将边长为的正方形沿对角线折成大小等于的二面角分别为的中点,若,则线段长度的取值范围为()A. B.C. D.7.一条直线经过点,并且它的倾斜角等于直线倾斜角的2倍,则这条直线的方程是()A. B.C. D.8.要得到函数y=cos4x+πA.向左平移π3个单位长度 B.向右平移πC.向左平移π12个单位长度 D.向右平移π9.将函数的图像上的所有点向右平移个单位长度,得到函数的图像,若的部分图像如图所示,则函数的解析式为A. B.C. D.10.如图,在正四棱锥中,,侧面积为,则它的体积为()A.4 B.8 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,若与的夹角为钝角,则实数的取值范围为______.12.已知,,,则在方向上的投影为__________.13.已知数列前项和,则该数列的通项公式______.14.在△ABC中,已知30,则B等于__________.15.一艘轮船按照北偏西30°的方向以每小时21海里的速度航行,一个灯塔M原来在轮船的北偏东30°的方向,经过40分钟后,测得灯塔在轮船的北偏东75°的方向,则灯塔和轮船原来的距离是_____海里.16.在数列中,,,,则_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某销售公司通过市场调查,得到某种商品的广告费(万元)与销售收入(万元)之间的数据如下:广告费(万元)1245销售收入(万元)10224048(1)求销售收入关于广告费的线性回归方程;(2)若该商品的成本(除广告费之外的其他费用)为万元,利用(1)中的回归方程求该商品利润的最大值(利润=销售收入-成本-广告费).参考公式:,.18.如图,在平行四边形中,,,,与的夹角为.(1)若,求、的值;(2)求的值;(3)求与的夹角的余弦值.19.已知,,函数.(1)求在区间上的最大值和最小值;(2)若函数在区间上是单调递增函数,求正数的取值范围.20.在等比数列中,.(1)求数列的通项公式;(2)设,求数列的前项和.21.函数.(1)求函数的图象的对称轴方程;(2)当时,不等式恒成立,求m的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

设圆锥的母线长为,根据圆锥的轴截面三角形的相似性,通过圆台的上、下底面半径之比为来求解.【详解】设圆锥的母线长为,因为圆台的上、下底面半径之比为,所以,解得.故选:B【点睛】本题主要考查了旋转体轴截面中的比例关系,还考查了运算求解的能力,属于基础题.2、D【解析】

利用等差数列的性质,将等式全部化为的形式,再计算。【详解】因为,且,则,所以.故选D【点睛】本题考查等差数列的性质,属于基础题。3、B【解析】

利用正弦定理可求.【详解】由正弦定理得.故选B.【点睛】本题考查正弦定理的应用,属于容易题.4、D【解析】

化简函数为正弦型函数,根据题意,利用正弦函数的图象与性质求得的取值范围.【详解】解:函数则函数在上是含原点的递增区间;又因为函数在区间上是单调递增,则,得不等式组又因为,所以解得.又因为函数在区间上恰好取得一次最大值为2,可得,所以,综上所述,可得.故选:D.【点睛】本题主要考查了正弦函数的图像和性质应用问题,也考查了三角函数的灵活应用,属于中档题.5、B【解析】试题分析:由题意得,设函数,则,所以,所以方程的解所在的区间为,故选B.考点:函数的零点.6、A【解析】

连接和,由二面角的定义得出,由结合为的中点,可知是的角平分线且,由的范围可得出的范围,于是得出的取值范围.【详解】连接,可得,即有为二面角的平面角,且,在等腰中,,且,,则,故答案为,故选A.【点睛】本题考查线段长度的取值范围,考查二面角的定义以及锐角三角函数的定义,解题的关键在于充分研究图形的几何特征,将所求线段与角建立关系,借助三角函数来求解,考查推理能力与计算能力,属于中等题.7、B【解析】

先求出直线的倾斜角,进而得出所求直线的倾斜角和斜率,再根据点斜式写直线的方程.【详解】已知直线的斜率为,则倾斜角为,故所求直线的倾斜角为,斜率为,由直线的点斜式得,即。故选B.【点睛】本题考查直线的性质与方程,属于基础题.8、C【解析】

先化简得y=cos【详解】因为y=cos所以要得到函数y=cos4x+π3的图像,只需将函数故选:C【点睛】本题主要考查三角函数的图像的变换,意在考查学生对该知识的理解掌握水平,属于基础题.9、C【解析】

根据图象求出A,ω和φ的值,得到g(x)的解析式,然后将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象.【详解】由图象知A=1,(),即函数的周期T=π,则π,得ω=2,即g(x)=sin(2x+φ),由五点对应法得2φ=2kπ+π,k,得φ,则g(x)=sin(2x),将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象,即f(x)=sin[2(x)]=sin(2x)=,故选C.【点睛】本题主要考查三角函数解析式的求解,结合图象求出A,ω和φ的值以及利用三角函数的图象变换关系是解决本题的关键.10、A【解析】

连交于,连,根据正四棱锥的定义可得平面,取中点,连,则由侧面积和底面边长,求出侧面等腰三角形的高,在中,求出,即可求解.【详解】连交于,连,取中点,连因为正四棱锥,则平面,,侧面积,在中,,.故选:A.【点睛】本题考查正四棱锥结构特征、体积和表面积,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由题意得出且与不共线,利用向量的坐标运算可求出实数的取值范围.【详解】由于与的夹角为钝角,则且与不共线,,,,解得且,因此,实数的取值范围是,故答案为:.【点睛】本题考查利用向量的夹角求参数,解题时要找到其转化条件,设两个非零向量与的夹角为,为锐角,为钝角.12、【解析】

根据数量积的几何意义计算.【详解】在方向上的投影为.故答案为:1.【点睛】本题考查向量的投影,掌握投影的概念是解题基础.13、【解析】

由,n≥2时,两式相减,可得{an}的通项公式;【详解】∵Sn=2n2(n∈N*),∴n=1时,a1=S1=2;n≥2时,an=Sn﹣=4n﹣2,a1=2也满足上式,∴an=4n﹣2故答案为【点睛】本题考查数列的递推式,考查数列的通项,属于基础题.14、【解析】

根据三角形正弦定理得到角,再由三角形内角和关系得到结果.【详解】根据三角形的正弦定理得到,故得到角,当角时,有三角形内角和为,得到,当角时,角故答案为【点睛】在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.15、【解析】

画出示意图,利用正弦定理求解即可.【详解】如图所示:为灯塔,为轮船,,则在中有:,且海里,则解得:海里.【点睛】本题考查解三角形的实际应用,难度较易.关键是能通过题意将航海问题的示意图画出,然后选用正余弦定理去分析问题.16、5【解析】

利用递推关系式依次求值,归纳出:an+6=an,再利用数列的周期性,得解.【详解】∵a1=1,a2=5,an+2=an+1-an(n∈N*),∴a3=a2-a1=5-1=4,同理可得:a4=-1,a5=-5,a6=-4,a7=1,a8=5,…,∴an+6=an.则a2018=a6×336+2=a2=5【点睛】本题考查了递推关系、数列的周期性,考查了推理能力与计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)19.44(万无)【解析】

(1)先求出,然后求出回归系数,得回归方程;(2)由回归方程得估计销售收入,减去成本得利润,由二次函数知识得最大值.【详解】(1)由题意,,所以,,所以回归方程为;(2)由(1),所以(万元)时,利润最大且最大值为19.44(万元).【点睛】本题考查求线性回归直线方程,考查回归方程的应用.考查了学生的运算求解能力.18、(1),;(2);(3).【解析】试题分析:(1)根据向量的运算有,可知,由模长即可求得、的值;(2)先求得向量,再根据向量的数量积及便可求得;(3)由前面的求解可得及,可利用求得向量夹角的余弦值.试题解析:(1)因为,所以即.(2)由向量的运算法则知,,所以.(3)因为与的夹角为,所以与的夹角为,又,所以..设与的夹角为,可得.所以与的夹角的余弦值为.考点:向量的运算.【思路点睛】本题主要考查向量的运算及单位向量,平面任一向量都可用两个不共线的单位向量来表示,其对应坐标就是沿单位向量方向上向量的模长;而对于向量的数量积,在得知模长及夹角的情况下,可以用两向量模长与夹角余弦三者的乘积来计算,也可转化为单位向量的数量积进行求解;而向量夹角的余弦值则经常通过向量的数量积与向量模长的比值来求得.19、(1)(2)【解析】

(1)利用向量的数量积化简即可得,再根据,求出的范围结合图像即可解决.(2)根据(1)求出,再根据正弦函数的单调性求出的单调区间即可.【详解】解:(1)因为所以,所以,所以(2)解法一:令得因为函数在上是单调递增函数,所以存在,使得,所以有因为,所以所以,又因为,得所以从而有所以,所以解法二:由,得因为所以所以解得又所以【点睛】本题主要考查了正弦函数在给定区间是的最值以及根据根据函数的单调性求参数.属于中等题,解决本题的关键是记住正弦函数的单调性、最值等.20、(1)(2)【解析】

(1)利用条件求数列的首项与公比,确定所求.(2)将分组,,再利用等比数列前n项和公式求和【详解】解:(1)设等比数列的公比为,所以,由,所以,则;(2),所以数列的前项和,则数列的前项和.【点睛】本题考查等比数列的通项,分组求和法,考查计算能力,属于中档题.21、(1),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论