安徽省滨湖寿春中学2025届数学高一下期末考试模拟试题含解析_第1页
安徽省滨湖寿春中学2025届数学高一下期末考试模拟试题含解析_第2页
安徽省滨湖寿春中学2025届数学高一下期末考试模拟试题含解析_第3页
安徽省滨湖寿春中学2025届数学高一下期末考试模拟试题含解析_第4页
安徽省滨湖寿春中学2025届数学高一下期末考试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省滨湖寿春中学2025届数学高一下期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线经过,两点,则直线的斜率为A. B. C. D.2.在中,,,成等差数列,,则的形状为()A.直角三角形 B.等腰直角三角形C.等腰三角形 D.等边三角形3.下图是实现秦九韶算法的一个程序框图,若输入的,,依次输入的为2,2,5,则输出的()A.10 B.12 C.60 D.654.若,则的最小值是()A. B. C. D.5.已知数列{an}为等差数列,Sn是它的前n项和.若=2,S3=12,则S4=()A.10 B.16 C.20 D.246.要得到函数的图像,只需要将函数的图像()A.向右平移个长度单位 B.向左平移个长度单位C.向右平移个长度单位 D.向左平移个长度单位7.已知,是平面,m,n是直线,则下列命题不正确的是()A.若,则 B.若,则C.若,则 D.若,则8.若、为异面直线,直线,则与的位置关系是()A.相交 B.异面 C.平行 D.异面或相交9.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18km,速度为1000km/h,飞行员先看到山顶的俯角为30°,经过1min后又看到山顶的俯角为75°,则山顶的海拔高度为(精确到0.1km)()A.11.4 B.6.6C.6.5 D.5.610.“”是“”成立的()A.充分非必要条件. B.必要非充分条件.C.充要条件. D.既非充分又非必要条件.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,角,,所对的边分别为,,,若,则为______三角形.12.已知数列,,且,则________.13.直线在轴上的截距是__________.14.若,且,则的最小值是______.15.已知函数,若,则的取值围为_________.16.已知函数,若对任意都有()成立,则的最小值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的最小正周期及单调递减区间;(2)若,且,求的值.18.如图,矩形中,平面,,为上的点,且平面,.(Ⅰ)求证:平面;(Ⅱ)求三棱锥的体积.19.在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.求证:(1)AC⊥BC1;(2)AC1∥平面CDB1.20.已知数列的前项和,函数对任意的都有,数列满足.(1)求数列,的通项公式;(2)若数列满足,是数列的前项和,是否存在正实数,使不等式对于一切的恒成立?若存在请求出的取值范围;若不存在请说明理由.21.已知一个几何体是由一个直角三角形绕其斜边旋转一周所形成的.若该三角形的周长为12米,三边长由小到大依次为a,b,c,且b恰好为a,c的算术平均数.(1)求a,b,c;(2)若在该几何体的表面涂上一层油漆,且每平方米油漆的造价为5元,求所涂的油漆的价格.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由两点法求斜率的公式可直接计算斜率值.【详解】直线经过,两点,直线的斜率为.【点睛】本题考查用两点法求直线斜率,属于基础题.2、B【解析】

根据等差中项以及余弦定理即可.【详解】因为,,成等差数列,得为直角三角形为等腰直角三角形,所以选择B【点睛】本题主要考查了等差中项和余弦定理,若为等差数列,则,属于基础题.3、D【解析】,,判断否,,,判断否,,,判断是,输出.故选.4、A【解析】,则,当且仅当取等号.所以选项是正确的.点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.5、C【解析】

根据等差数列的前n项和公式,即可求出.【详解】因为S3=3+d=6+3d=12,解得d=2,所以S4=4+d=20.【点睛】本题主要考查了等差数列的前n项和公式,属于中档题.6、D【解析】

根据的图像变换规律求解即可【详解】设平移量为,则由,满足:,故由向左平移个长度单位可得到故选:D【点睛】本题考查函数的图像变换规律,属于基础题7、D【解析】

由题意找到反例即可确定错误的选项.【详解】如图所示,在正方体中,取直线m为,平面为,满足,取平面为平面,则的交线为,很明显m和n为异面直线,不满足,选项D错误;如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面,所以A正确;如果两个平面与同一条直线垂直,则这两个平面平行,所以B正确;由A选项和面面垂直的判定定理可得C也正确.本题答案为D.【点睛】本题主要考查线面关系有关命题真假的判断,意在考查学生的转化能力和逻辑推理能力,属基础题.8、D【解析】解:因为为异面直线,直线,则与的位置关系是异面或相交,选D9、B【解析】AB=1000×(km),∴BC=·sin30°=(km).∴航线离山顶h=×sin75°≈11.4(km).∴山高为18-11.4=6.6(km).选B.10、A【解析】

依次分析充分性与必要性是否成立.【详解】时,而时不一定成立,所以“”是“”成立的充分非必要条件,选A.【点睛】本题考查充要关系判定,考查基本分析判断能力,属基础题二、填空题:本大题共6小题,每小题5分,共30分。11、等腰或直角【解析】

根据正弦定理化简得到,得到,故或,得到答案.【详解】利用正弦定理得到:,化简得到即故或故答案为等腰或直角【点睛】本题考查了正弦定理和三角恒等变换,漏解是容易发生的错误.12、【解析】

由题意可得{}是以+1为首项,以2为公比的等比数列,再由已知求得首项,进一步求得即可.【详解】在数列中,满足得,则数列是以+1为首项,以公比为2的等比数列,得,由,则,得.由,得,故.故答案为:【点睛】本题考查了数列的递推式,利用构造等比数列方法求数列的通项公式,属于中档题.13、【解析】

把直线方程化为斜截式,可得它在轴上的截距.【详解】解:直线,即,故它在轴上的截距是4,故答案为:.【点睛】本题主要考查直线方程的几种形式,属于基础题.14、8【解析】

利用的代换,将写成,然后根据基本不等式求解最小值.【详解】因为(即取等号),所以最小值为.【点睛】已知,求解()的最小值的处理方法:利用,得到,展开后利用基本不等式求解,注意取等号的条件.15、【解析】

由函数,根据,得到,再由,得到,结合余弦函数的性质,即可求解.【详解】由题意,函数,又由,即,即,因为,则,所以或,即或,所以实数的取值围为.故答案为:.【点睛】本题主要考查了余弦的倍角公式,以及三角不等式的求解,其中解答中熟练应用余弦函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.16、【解析】

根据和的取值特点,判断出两个值都是最值,然后根据图象去确定最小值.【详解】因为对任意成立,所以取最小值,取最大值;取最小值时,与必为同一周期内的最小值和最大值的对应的,则,且,故.【点睛】任何一个函数,若有对任何定义域成立,此时必有:,.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最小正周期为,单调递减区间为(2).【解析】

(1)利用二倍角降幂公式和辅助角公式将函数的解析式化为,利用周期公式可得出函数的最小正周期,然后解不等式可得出函数的单调递减区间;(2)由可得出角的值,再利用两角和的正切公式可计算出的值.【详解】(1).函数的最小正周期为,令,解得.所以,函数的单调递减区间为;(2),即,,.,故,因此.【点睛】本题考查三角函数基本性质,考查两角和的正切公式求值,解题时要利用三角恒等变换思想将三角函数的解析式化简,利用正弦、余弦函数的性质求解,考查运算求解能力,属于中等题.18、(Ⅰ)见解析(Ⅱ)【解析】

(Ⅰ)先证明,再证明平面;(Ⅱ)由等积法可得即可求解.【详解】(Ⅰ)因为是中点,又因为平面,所以,由已知,所以是中点,所以,因为平面,平面,所以平面.(Ⅱ)因为平面,,所以平面,则,又因为平面,所以,则平面,由可得平面,因为,此时,,所以.【点睛】本题主要考查线面平行的判定及利用等积法求三棱锥的体积问题,属常规考题.19、(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)由勾股定理可证得为直角三角形即可证得,由直棱柱可知面,可证得,根据线面垂直的判定定理可证得面,从而可得.(2)设与的交点为,连结,由中位线可证得,根据线面平行的判定定理可证得平面.试题解析:证明:(1)证明:,,为直角三角形且,即.又∵三棱柱为直棱柱,面,面,,,面,面,.(2)设与的交点为,连结,是的中点,是的中点,.面,面,平面.考点:1线线垂直,线面垂直;2线面平行.20、(1),;(2).【解析】分析:(1)利用的关系,求解;倒序相加求。(2)先用错位相减求,分离参数,使得对于一切的恒成立,转化为求的最值。详解:(1)时满足上式,故∵=1∴∵①∴②∴①+②,得.(2)∵,∴∴①,②①-②得即要使得不等式恒成立,恒成立对于一切的恒成立,即,令,则当且仅当时等号成立,故所以为所求.点睛:1、,一定要注意,当时要验证是否满足数列。2、等比乘等差结构的数列用错位相减。3、数列中的恒成立问题与函数中的恒成立问题解法一致。21、(1)3,4,1;(2)元.【解析】

(1)由题意,根据周长、三边关系、勾股定理,a,b,c,建立方程组,解得即可.(2)根据题意,旋转得到的几何体为由底面半径为米,母线长分别

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论