湖南省湖湘教育三新探索协作体2025届高一下数学期末监测试题含解析_第1页
湖南省湖湘教育三新探索协作体2025届高一下数学期末监测试题含解析_第2页
湖南省湖湘教育三新探索协作体2025届高一下数学期末监测试题含解析_第3页
湖南省湖湘教育三新探索协作体2025届高一下数学期末监测试题含解析_第4页
湖南省湖湘教育三新探索协作体2025届高一下数学期末监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省湖湘教育三新探索协作体2025届高一下数学期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的零点所在的区间为()A. B. C. D.2.已知等差数列an的前n项和为Sn,若a8=12,S8A.-2 B.2 C.-1 D.13.设函数(为常实数)在区间上的最小值为,则的值等于()A.4 B.-6 C.-3 D.-44.设,则使函数的定义域是,且为偶函数的所有的值是()A.0,2 B.0,-2 C. D.25.在中,设角,,的对边分别是,,,且,则一定是()A.等边三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形6.函数,当时函数取得最大值,则()A. B. C. D.7.若抛物线上一点到焦点的距离是该点到轴距离的3倍,则()A. B. C. D.78.等差数列中,,则().A.110 B.120 C.130 D.1409.已知等差数列an的前n项和为18,若S3=1,aA.9 B.21 C.27 D.3610.在△ABC中,,,.的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设函数满足,当时,,则=________.12.若数列满足,则_____.13.实数2和8的等比中项是__________.14.某公司调查了商品的广告投入费用(万元)与销售利润(万元)的统计数据,如下表:广告费用(万元)销售利润(万元)由表中的数据得线性回归方程为,则当时,销售利润的估值为___.(其中:)15.一湖中有不在同一直线的三个小岛A、B、C,前期为开发旅游资源在A、B、C三岛之间已经建有索道供游客观赏,经测量可知AB两岛之间距离为3公里,BC两岛之间距离为5公里,AC两岛之间距离为7公里,现调查后发现,游客对在同一圆周上三岛A、B、C且位于(优弧)一片的风景更加喜欢,但由于环保、安全等其他原因,没办法尽可能一次游览更大面积的湖面风光,现决定在上选择一个点D建立索道供游客游览,经研究论证为使得游览面积最大,只需使得△ADC面积最大即可.则当△ADC面积最大时建立索道AD的长为______公里.(注:索道两端之间的长度视为线段)16.已知中内角的对边分别是,,,,则为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面立角坐标系中,过点的圆的圆心在轴上,且与过原点倾斜角为的直线相切.(1)求圆的标准方程;(2)点在直线上,过点作圆的切线、,切点分别为、,求经过、、、四点的圆所过的定点的坐标.18.已知三棱锥中,,.若平面分别与棱相交于点且平面.求证:(1);(2).19.已知圆的圆心在线段上,圆经过点,且与轴相切.(1)求圆的方程;(2)若直线与圆交于,两点,当最小时,求直线的方程及的最小值.20.(1)计算:;(2)化简:.21.已知数列的首项.(1)证明:数列是等比数列;(2)数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

分别将选项中的区间端点值代回,利用零点存在性定理判断即可【详解】由题函数单调递增,,,则,故选:C【点睛】本题考查利用零点存在性定理判断零点所在区间,属于基础题2、B【解析】

直角利用待定系数法可得答案.【详解】因为S8=8a1+a82【点睛】本题主要考查等差数列的基本量的相关计算,难度不大.3、D【解析】试题分析:,,,当时,,故.考点:1、三角恒等变换;2、三角函数的性质.4、D【解析】

根据幂函数的性质,结合题中条件,即可得出结果.【详解】若函数的定义域是,则;又函数为偶函数,所以只能使偶数;因为,所以能取的值为2.故选D【点睛】本题主要考查幂函数性质的应用,熟记幂函数的性质即可,属于常考题型.5、C【解析】

利用二倍角公式化简已知表达式,利用余弦定理化角为边的关系,即可推出三角形的形状.【详解】解:因为,所以,即,由余弦定理可知:,所以.所以三角形是直角三角形.故选:.【点睛】本题考查三角形的形状的判断,余弦定理的应用,考查计算能力,属于中档题.6、A【解析】

根据三角恒等变换的公式化简得,其中,再根据题意,得到,求得,结合诱导公式,即可求解.【详解】由题意,根据三角恒等变换的公式,可得,其中,因为当时函数取得最大值,即,即,可得,即,所以.故选:A.【点睛】本题主要考查了三角恒等变换的应用,以及诱导公式的化简求值,其中解答中熟记三角恒等变换的公式,合理利用三角函数的诱导公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.7、A【解析】由题意,焦点坐标,所以,解得,故选A。8、B【解析】

直接运用等差数列的下标关系即可求出的值.【详解】因为数列是等差数列,所以,因此,故本题选B.【点睛】本题考查了等差数列下标性质,考查了数学运算能力.9、C【解析】

利用前n项和Sn的性质可求n【详解】因为S3而a1所以6Snn【点睛】一般地,如果an为等差数列,Sn为其前(1)若m,n,p,q∈N*,m+n=p+q,则am(2)Sn=n(3)Sn=An(4)Sn10、B【解析】

由正弦定理列方程求解。【详解】由正弦定理可得:,所以,解得:.故选:B【点睛】本题主要考查了正弦定理,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由已知得f()=f()+sin=f()+sin+sin=f()+sin+sin+sin,由此能求出结果.【详解】∵函数f(x)(x∈R)满足f(x+π)=f(x)+sinx,当0≤x<π时,f(x)=0,∴f()=f()+sin=f()+sin+sin=f()+sin+sin+sin=0+=.故答案为:.【点睛】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.12、【解析】

由递推公式逐步求出.【详解】.故答案为:【点睛】本题考查数列的递推公式,属于基础题.13、【解析】所求的等比中项为:.14、12.2【解析】

先求出,的平均数,再由题中所给公式计算出和,进而得出线性回归方程,将代入,即可求出结果.【详解】由题中数据可得:,,所以,所以,故回归直线方程为,所以当时,【点睛】本题主要考查线性回归方程,需要考生掌握住最小二乘法求与,属于基础题型.15、【解析】

根据题意画出草图,根据余弦定理求出的值,设点到的距离为,可得,分析可知取最大时,取最大值,然后再对为中点和不是中点两种情况分析,可得的最大值为,然后再根据圆的有关性质和正弦定理,即可求出结果.【详解】根据题意可作出及其外接圆,连接,交于点,连接,如下图:在中,由余弦定理,由为的内角,可知,所以.设的半径为,点到的距离为,点到的距离为,则,故取最大时,取最大值.①当为中点时,由垂径定理知,即,此时,故;②当不是中点时,不与垂直,设此时与所成角为,则,故;由垂线段最短知,此时;综上,当为中点时,到的距离最大,最大值为;由圆周角定理可知,,由垂径定理知,此时点为优弧的中点,故,则,在中,由正弦定理得所以.所以当△ADC面积最大时建立索道AD的长为公里.故答案为:.【点评】本题考查了正弦定理、余弦定理在解决实际问题中的应用,属于中档题.16、【解析】

根据正弦定理即可.【详解】因为,,;所以,由正弦定理可得【点睛】本题主要考查了正弦定理:,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)经过、、、四点的圆所过定点的坐标为、【解析】

(1)先算出直线方程,根据相切和过点,圆心在轴上联立方程解得答案.(2)取线段的中点,经过、、、四点的圆是以线段为直径的圆,设点的坐标为,则点的坐标为,将圆方程表示出来,联立方程组解得答案.【详解】(1)由题意知,直线的方程为,整理为一般方程可得由圆的圆心在轴上,可设圆的方程为,由题意有,解得:,,故圆的标准方程为.(2)由圆的几何性质知,,,取线段的中点,由直角三角形的性质可知,故经过、、、四点的圆是以线段为直径的圆,设点的坐标为,则点的坐标为有则以为直径的圆的方程为:,整理为可得.令,解得或,故经过、、、四点的圆所过定点的坐标为、.【点睛】本题考查了圆的方程,切线问题,四点共圆,定点问题,综合性强,技巧性高,意在考查学生的综合应用能力.18、(1)证明见解析;(2)证明见解析.【解析】

(1)利用线面平行的性质定理可得线线平行,最后利用平行公理可以证明出;(2)利用线面垂直的判定定理可以证明线面垂直,利用线面垂直的性质可以证明线线垂直,利用平行线的性质,最后证明出.【详解】证明(1)因为平面,平面平面,平面,所以有,同理可证出,根据平行公理,可得;(2)因为,,,平面,所以平面,而平面,所以,由(1)可知,所以.【点睛】本题考查了线面平行的性质定理,线面垂直的判定定理、以及平行公理的应用.19、(1)(2)的方程为,最小为【解析】

(1)设圆的方程为,由题意可得,求解即可得到圆的方程;(2)过定点,当直线与直线垂直时,直线被圆截得的弦最小,求解即可.【详解】解:(1)设圆的方程为,所以,解得所以圆的方程为.(2)直线的方程可化为点斜式,所以过定点.又点在圆内,当直线与直线垂直时,直线被圆截得的弦最小.因为,所以的斜率,所以的方程为,即,因为,,所以.【点睛】求圆的弦长的常用方法几何法:设圆的半径为r,弦心距为d,弦长为l,则;②代数方法:运用韦达定理及弦长公式:==.20、(1)-2(2)【解析】

(1)利用特殊角的三角函数值求得表达式的值.(2)利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论