版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年安徽省蚌埠市名校中考考前最后一卷数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.二元一次方程组的解是()A. B. C. D.2.在0,π,﹣3,0.6,这5个实数中,无理数的个数为()A.1个 B.2个 C.3个 D.4个3.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A. B. C. D.4.若M(2,2)和N(b,﹣1﹣n2)是反比例函数y=的图象上的两个点,则一次函数y=kx+b的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限5.如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=()A.30°B.40°C.50°D.60°6.下列图形是轴对称图形的有()A.2个 B.3个 C.4个 D.5个7.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()A.三亚﹣﹣永兴岛 B.永兴岛﹣﹣黄岩岛C.黄岩岛﹣﹣弹丸礁 D.渚碧礁﹣﹣曾母暗山8.如图,与∠1是内错角的是()A.∠2B.∠3C.∠4D.∠59.如图,边长为2a的等边△ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A. B.a C. D.10.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。”大致意思是:“用一根绳子去量一根木条,绳长剩余4.5尺,将绳子对折再量木条,木条剩余一尺,问木条长多少尺”,设绳子长尺,木条长尺,根据题意所列方程组正确的是()A. B. C. D.11.函数的自变量x的取值范围是()A. B. C. D.12.下列几何体中,主视图和左视图都是矩形的是()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知抛物线y=,那么抛物线在y轴右侧部分是_________(填“上升的”或“下降的”).14.如图,直线a∥b,∠l=60°,∠2=40°,则∠3=_____.15.阅读理解:引入新数,新数满足分配律,结合律,交换律.已知,那么________.16.春节期间,《中国诗词大会)节目的播出深受观众喜爱,进一步激起了人们对古诗词的喜爱,现有以下四句古诗词:①锄禾日当午;②春眠不觉晓;③白日依山尽;④床前明月光.甲、乙两名同学从中各随机选取了一句写在纸上,则他们选取的诗句恰好相同的概率为________.17.函数y=中,自变量x的取值范围是18.因式分解:x2﹣10x+24=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,在梯形ABCD中,AD∥BC,AB=DC,E是对角线AC上一点,且AC·CE=AD·BC.(1)求证:∠DCA=∠EBC;(2)延长BE交AD于F,求证:AB2=AF·AD.20.(6分)如图,在城市改造中,市政府欲在一条人工河上架一座桥,河的两岸PQ与MN平行,河岸MN上有A、B两个相距50米的凉亭,小亮在河对岸D处测得∠ADP=60°,然后沿河岸走了110米到达C处,测得∠BCP=30°,求这条河的宽.(结果保留根号)21.(6分)如图,在梯形ABCD中,AD∥BC,对角线AC、BD交于点M,点E在边BC上,且∠DAE=∠DCB,联结AE,AE与BD交于点F.(1)求证:;(2)连接DE,如果BF=3FM,求证:四边形ABED是平行四边形.22.(8分)如图1,在直角梯形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,过点C作CE⊥BP交直线BP于E.(1)若ABBC=3(2)若AB=BC.①如图2,当点P与E重合时,求PDPC②如图3,设∠DAP的平分线AF交直线BP于F,当CE=1,PDPC23.(8分)如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.填空:∠ABC=°,BC=;判断△ABC与△DEF是否相似,并证明你的结论.24.(10分)如图,在△ABC中,∠ABC=90°,BD为AC边上的中线.(1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C作直线CE,使CE⊥BC于点C,交BD的延长线于点E,连接AE;(2)求证:四边形ABCE是矩形.25.(10分)水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W(L)与滴水时间t(h)的函数关系图象,请结合图象解答下列问题:容器内原有水多少?求W与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?图①图②26.(12分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?27.(12分)关于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有两个实数根.求m的取值范围;若m为正整数,求此方程的根.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】
利用加减消元法解二元一次方程组即可得出答案【详解】解:①﹣②得到y=2,把y=2代入①得到x=4,∴,故选:B.【点睛】此题考查了解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.2、B【解析】
分别根据无理数、有理数的定义逐一判断即可得.【详解】解:在0,π,-3,0.6,这5个实数中,无理数有π、这2个,故选B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.3、B【解析】试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.考点:由实际问题抽象出分式方程4、C【解析】
把(2,2)代入得k=4,把(b,﹣1﹣n2)代入得,k=b(﹣1﹣n2),即根据k、b的值确定一次函数y=kx+b的图象经过的象限.【详解】解:把(2,2)代入,得k=4,把(b,﹣1﹣n2)代入得:k=b(﹣1﹣n2),即,∵k=4>0,<0,∴一次函数y=kx+b的图象经过第一、三、四象限,故选C.【点睛】本题考查了反比例函数图象的性质以及一次函数经过的象限,根据反比例函数的性质得出k,b的符号是解题关键.5、D【解析】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故选D.点睛:本题考查的是平行线的性质,熟知两直线平行,同位角相等是解答此题的关键.6、C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.7、A【解析】
根据两点直线距离最短可在图中看出三亚-永兴岛之间距离最短.【详解】由图可得,两个点之间距离最短的是三亚-永兴岛.故答案选A.【点睛】本题考查的知识点是两点之间直线距离最短,解题的关键是熟练的掌握两点之间直线距离最短.8、B【解析】由内错角定义选B.9、A【解析】
取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明∴△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【详解】如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,MG⊥CH时,MG最短,即HN最短,此时∵∠BCH=×60°=30°,CG=AB=×2a=a,∴MG=CG=×a=,∴HN=,故选A.【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.10、A【解析】
本题的等量关系是:绳长-木长=4.5;木长-×绳长=1,据此列方程组即可求解.【详解】设绳子长x尺,木条长y尺,依题意有.故选A.【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.11、D【解析】
根据二次根式的意义,被开方数是非负数.【详解】根据题意得,解得.故选D.【点睛】本题考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.12、C【解析】
主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.【详解】A.主视图为圆形,左视图为圆,故选项错误;B.主视图为三角形,左视图为三角形,故选项错误;C.主视图为矩形,左视图为矩形,故选项正确;D.主视图为矩形,左视图为圆形,故选项错误.故答案选:C.【点睛】本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、上升的【解析】
∵抛物线y=x2-1开口向上,对称轴为x=0(y轴),
∴在y轴右侧部分抛物线呈上升趋势.故答案为:上升的.【点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.14、80°【解析】
根据平行线的性质求出∠4,根据三角形内角和定理计算即可.【详解】解:∵a∥b,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案为:80°.【点睛】本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.15、2【解析】
根据定义即可求出答案.【详解】由题意可知:原式=1-i2=1-(-1)=2故答案为2【点睛】本题考查新定义型运算,解题的关键是正确理解新定义.16、【解析】
用列举法或者树状图法解答即可.【详解】解:如图,由图可得,甲乙两人选取的诗句恰好相同的概率为.故答案为:.【点睛】本题考查用树状图法或者列表法求随机事件的概率,熟练掌握两种解答方法是关键.17、x≥0且x≠1【解析】试题分析:根据分式有意义的条件是分母不为0;分析原函数式可得关系式x-1≠0,解可得答案.试题解析:根据题意可得x-1≠0;解得x≠1;故答案为x≠1.考点:函数自变量的取值范围;分式有意义的条件.18、(x﹣4)(x﹣6)【解析】
因为(-4)×(-6)=24,(-4)+(-6)=-10,所以利用十字相乘法分解因式即可.【详解】x2﹣10x+24=x2﹣10x+(-4)×(-6)=(x﹣4)(x﹣6)【点睛】本题考查的是因式分解,熟练掌握因式分解的方法是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)见解析;(2)见解析.【解析】
(1)由AD∥BC得∠DAC=∠BCA,又∵AC·CE=AD·BC∴,∴△ACD∽△CBE,∴∠DCA=∠EBC,(2)由题中条件易证得△ABF∽△DAC∴,又∵AB=DC,∴【详解】证明:(1)∵AD∥BC,∴∠DAC=∠BCA,∵AC·CE=AD·BC,∴,∴△ACD∽△CBE,∴∠DCA=∠EBC,(2)∵AD∥BC,∴∠AFB=∠EBC,∵∠DCA=∠EBC,∴∠AFB=∠DCA,∵AD∥BC,AB=DC,∴∠BAD=∠ADC,∴△ABF∽△DAC,∴,∵AB=DC,∴.【点睛】本题重点考查了平行线的性质和三角形相似的判定,灵活运用所学知识是解题的关键.20、米.【解析】试题分析:根据矩形的性质,得到对边相等,设这条河宽为x米,则根据特殊角的三角函数值,可以表示出ED和BF,根据EC=ED+CD,AF=AB+BF,列出等式方程,求解即可.试题解析:作AE⊥PQ于E,CF⊥MN于F.∵PQ∥MN,∴四边形AECF为矩形,∴EC=AF,AE=CF.设这条河宽为x米,∴AE=CF=x.在Rt△AED中,∵PQ∥MN,∴在Rt△BCF中,∵EC=ED+CD,AF=AB+BF,解得∴这条河的宽为米.21、(1)证明见解析;(2)证明见解析.【解析】分析:(1)由AD∥BC可得出∠DAE=∠AEB,结合∠DCB=∠DAE可得出∠DCB=∠AEB,进而可得出AE∥DC、△AMF∽△CMD,根据相似三角形的性质可得出=,根据AD∥BC,可得出△AMD∽△CMB,根据相似三角形的性质可得出=,进而可得出=,即MD2=MF•MB;(2)设FM=a,则BF=3a,BM=4a.由(1)的结论可求出MD的长度,代入DF=DM+MF可得出DF的长度,由AD∥BC,可得出△AFD∽△△EFB,根据相似三角形的性质可得出AF=EF,利用“对角线互相平分的四边形是平行四边形”即可证出四边形ABED是平行四边形.详解:(1)∵AD∥BC,∴∠DAE=∠AEB.∵∠DCB=∠DAE,∴∠DCB=∠AEB,∴AE∥DC,∴△AMF∽△CMD,∴=.∵AD∥BC,∴△AMD∽△CMB,∴==,即MD2=MF•MB.(2)设FM=a,则BF=3a,BM=4a.由MD2=MF•MB,得:MD2=a•4a,∴MD=2a,∴DF=BF=3a.∵AD∥BC,∴△AFD∽△△EFB,∴==1,∴AF=EF,∴四边形ABED是平行四边形.点睛:本题考查了相似三角形的判定与性质、平行四边形的判定、平行线的性质以及矩形,解题的关键是:(1)利用相似三角形的性质找出=、=;(2)牢记“对角线互相平分的四边形是平行四边形”.22、(1)证明见解析;(2)①32【解析】
(1)过点A作AF⊥BP于F,根据等腰三角形的性质得到BF=BP,易证Rt△ABF∽Rt△BCE,根据相似三角形的性质得到ABBC=BF(2)①延长BP、AD交于点F,过点A作AG⊥BP于G,证明△ABG≌△BCP,根据全等三角形的性质得BG=CP,设BG=1,则PG=PC=1,BC=AB=5,在Rt△ABF中,由射影定理知,AB2=BG·BF=5,即可求出BF=5,PF=5-1-1=3,即可求出PDPC②延长BF、AD交于点G,过点A作AH⊥BE于H,证明△ABH≌△BCE,根据全等三角形的性质得BG=CP,设BH=BP=CE=1,又PDPC=PGPB=74,得到PG=7AH=AB2【详解】解:(1)过点A作AF⊥BP于F∵AB=AP∴BF=BP,∵Rt△ABF∽Rt△BCE∴AB∴BP=32(2)①延长BP、AD交于点F,过点A作AG⊥BP于G∵AB=BC∴△ABG≌△BCP(AAS)∴BG=CP设BG=1,则PG=PC=1∴BC=AB=5在Rt△ABF中,由射影定理知,AB2=BG·BF=5∴BF=5,PF=5-1-1=3∴PD②延长BF、AD交于点G,过点A作AH⊥BE于H∵AB=BC∴△ABH≌△BCE(AAS)设BH=BP=CE=1∵PDPC∴PG=72,BG=∵AB2=BH·BG∴AB=222∴AH=∵AF平分∠PAD,AH平分∠BAP∴∠FAH=∠BAD=45°∴△AFH为等腰直角三角形∴AF=【点睛】考查等腰三角形的性质,勾股定理,射影定理,平行线分线段成比例定理等,解题的关键是作出辅助线.难度较大.23、(1)(2)△ABC∽△DEF.【解析】
(1)根据已知条件,结合网格可以求出∠ABC的度数,根据,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上,利用勾股定理即可求出线段BC的长;
(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC与△DEF相似.【详解】(1)故答案为(2)△ABC∽△DEF.证明:∵在4×4的正方形方格中,∴∠ABC=∠DEF.∵∴∴△ABC∽△DEF.【点睛】考查勾股定理以及相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.24、(1)见解析;(2)见解析.【解析】
(1)根据题意作图即可;
(2)先根据BD为AC边上的中线,AD=DC,再证明△ABD≌△CED(AAS)得AB=EC,已知∠ABC=90°即可得四边形ABCE是矩形.【详解】(1)解:如图所示:E点即为所求;(2)证明:∵CE⊥BC,∴∠BCE=90°,∵∠ABC=90°,∴∠BCE+∠ABC=180°,∴AB∥CE,∴∠ABE=∠CEB,∠BAC=∠ECA,∵BD为AC边上的中线,∴AD=DC,在△ABD和△CED中,∴△ABD≌△CED(AAS),∴AB=EC,∴四边形ABCE是平行四边形,∵∠ABC=90°,∴平行四边形ABCE是矩形.【点睛】本题考查了全等三角形的判定与性质与矩形的性质,解题的关键是熟练的掌握全等三角形的判定与性质与矩形的性质.25、(1)0.3L;(2)在这种滴水状态下一天的滴水量为9.6L.【解析】
(1)根据点的实际意义可得;(2)设与之间的函数关系式为,待定系数法求解可得,计算出时的值,再减去容器内原有的水量即可.【详解】(1)由图象可知,容器内原有水0.3L.(2)由图象可知W与t之间的函数图象经过点(0,0.3),故设函数关系式为W=kt+0.3.又因为函数图象经过点(1.5,0.9),代入函数关系式,得1.5k+0.3=0.9,解得k=0.4.故W与t之间的函数关系式为W=0.4t+0.3.当t=24时,W=0.4×24+0.3=9.9(L),9.9-0.3=9.6(L),即在这种滴水状态下一天的滴水量为9.6L.【点睛】本题考查了一次函数的应用,关键是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 营养配餐及食谱编制曾小娟
- 外阴癌手术步骤
- 《光合作用讲》课件
- 口腔科感染管理知识简单
- 《公司债券融资》课件
- 人力资源公司的培训
- 《全神贯注》课件
- 世界金融机构
- 小蝌蚪找妈妈课件
- 专题08阅读理解精练精析20篇(期末真题名校模拟)-2022-2023学年七年级英语下学期期末复习查缺补漏冲刺满分
- GB/T 4354-2008优质碳素钢热轧盘条
- GB/T 37439-2019高速铁路预制后张法预应力混凝土简支梁
- GB/T 18723-2002印刷技术用黏性仪测定浆状油墨和连接料的黏性
- 药品供应目录(人民医院药品名分类汇总表)
- CAK6136V车床面板操作
- 矿井提升机技术参数介绍及设备选型过程
- 《经济学基础》试题库(附答案)
- 学前教育论文范文8000字(通用九篇)
- 初中议论文写作讲解完整版课件
- 赣价协〔2023〕9号江西省建设工程造价咨询服务收费基准价
- 5000字论文范文(推荐十篇)
评论
0/150
提交评论