版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省克东县市级名校中考二模数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.二次函数y=(2x-1)2+2的顶点的坐标是()A.(1,2) B.(1,-2) C.(,2)
D.(-,-2)2.满足不等式组的整数解是()A.﹣2 B.﹣1 C.0 D.13.如果t>0,那么a+t与a的大小关系是()A.a+t>aB.a+t<aC.a+t≥aD.不能确定4.如果a﹣b=5,那么代数式(﹣2)•的值是()A.﹣ B. C.﹣5 D.55.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.6.如图,已知数轴上的点A、B表示的实数分别为a,b,那么下列等式成立的是()A. B.C. D.7.为了纪念物理学家费米,物理学界以费米(飞米)作为长度单位.已知1飞米等于0.000000000000001米,把0.000000000000001这个数用科学记数法表示为()A.1×10﹣15 B.0.1×10﹣14 C.0.01×10﹣13 D.0.01×10﹣128.如图,已知函数y=﹣与函数y=ax2+bx的交点P的纵坐标为1,则不等式ax2+bx+>0的解集是()A.x<﹣3 B.﹣3<x<0 C.x<﹣3或x>0 D.x>09.下列生态环保标志中,是中心对称图形的是()A.B.C.D.10.下列安全标志图中,是中心对称图形的是()A. B. C. D.11.化简的结果是()A. B. C. D.12.如图所示,在平面直角坐标系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C;把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,则旋转第2017次后,得到的等腰直角三角形的直角顶点P2018的坐标为()A.(4030,1) B.(4029,﹣1)C.(4033,1) D.(4035,﹣1)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若式子有意义,则x的取值范围是______.14.如图,四边形ABCD与四边形EFGH位似,位似中心点是点O,,则=_____.15.如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC=__.
16.若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是()A.﹣1 B.0 C.1 D.217.一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°==1.类似地,可以求得sin15°的值是_______.18.若关于x的方程有两个不相等的实数根,则实数a的取值范围是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在等腰△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D且BD=2AD,过点D作DE⊥AC交BA延长线于点E,垂足为点F.(1)求tan∠ADF的值;(2)证明:DE是⊙O的切线;(3)若⊙O的半径R=5,求EF的长.20.(6分)已知,如图,是的平分线,,点在上,,,垂足分别是、.试说明:.21.(6分)如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5米,求小巷有多宽.22.(8分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.23.(8分)如图1,图2分别是某款篮球架的实物图与示意图,已知底座BC=1.5米,底座BC与支架AC所成的角∠ACB=60°,支架AF的长为2.50米,篮板顶端F点到篮筐D的距离FD=1.3米,篮板底部支架HE与支架AF所成的角∠FHE=45°,求篮筐D到地面的距离.(精确到0.01米参考数据:≈1.73,≈1.41)24.(10分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求AC和AB的长(结果保留小数点后一位)(参考数据:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)25.(10分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.请直接写出y与x之间的函数关系式和自变量x的取值范围;当每本足球纪念册销售单价是多少元时,商店每天获利2400元?将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?26.(12分)如图,在直角坐标系xOy中,直线与双曲线相交于A(-1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.求m、n的值;求直线AC的解析式.27.(12分)在平面直角坐标系中,O为原点,点A(3,0),点B(0,4),把△ABO绕点A顺时针旋转,得△AB′O′,点B,O旋转后的对应点为B′,O.(1)如图1,当旋转角为90°时,求BB′的长;(2)如图2,当旋转角为120°时,求点O′的坐标;(3)在(2)的条件下,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标.(直接写出结果即可)
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】试题分析:二次函数y=(2x-1)+2即的顶点坐标为(,2)考点:二次函数点评:本题考查二次函数的顶点坐标,考生要掌握二次函数的顶点式与其顶点坐标的关系2、C【解析】
先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可.【详解】∵解不等式①得:x≤0.5,解不等式②得:x>-1,∴不等式组的解集为-1<x≤0.5,∴不等式组的整数解为0,故选C.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集找出不等式组的解集是解此题的关键.3、A【解析】试题分析:根据不等式的基本性质即可得到结果.t>0,∴a+t>a,故选A.考点:本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变.4、D【解析】【分析】先对括号内的进行通分,进行分式的加减法运算,然后再进行分式的乘除法运算,最后把a-b=5整体代入进行求解即可.【详解】(﹣2)•===a-b,当a-b=5时,原式=5,故选D.5、D【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.考点:由三视图判断几何体.视频6、B【解析】
根据图示,可得:b<0<a,|b|>|a|,据此判断即可.【详解】∵b<0<a,|b|>|a|,
∴a+b<0,
∴|a+b|=-a-b.
故选B.【点睛】此题主要考查了实数与数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握.7、A【解析】
根据科学记数法的表示方法解答.【详解】解:把这个数用科学记数法表示为.故选:.【点睛】此题重点考查学生对科学记数法的应用,熟练掌握小于0的数用科学记数法表示法是解题的关键.8、C【解析】
首先求出P点坐标,进而利用函数图象得出不等式ax2+bx+>1的解集.【详解】∵函数y=﹣与函数y=ax2+bx的交点P的纵坐标为1,∴1=﹣,解得:x=﹣3,∴P(﹣3,1),故不等式ax2+bx+>1的解集是:x<﹣3或x>1.故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P点坐标.9、B【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.【考点】中心对称图形.10、B【解析】试题分析:A.不是中心对称图形,故此选项不合题意;B.是中心对称图形,故此选项符合题意;C.不是中心对称图形,故此选项不符合题意;D.不是中心对称图形,故此选项不合题意;故选B.考点:中心对称图形.11、D【解析】
将除法变为乘法,化简二次根式,再用乘法分配律展开计算即可.【详解】原式=×=×(+1)=2+.故选D.【点睛】本题主要考查二次根式的加减乘除混合运算,掌握二次根式的混合运算法则是解题关键.12、D【解析】
根据题意可以求得P1,点P2,点P3的坐标,从而可以发现其中的变化的规律,从而可以求得P2018的坐标,本题得以解决.【详解】解:由题意可得,
点P1(1,1),点P2(3,-1),点P3(5,1),
∴P2018的横坐标为:2×2018-1=4035,纵坐标为:-1,
即P2018的坐标为(4035,-1),
故选:D.【点睛】本题考查了点的坐标变化规律,解答本题的关键是发现各点的变化规律,求出相应的点的坐标.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、x>.【解析】解:依题意得:2x+3>1.解得x>.故答案为x>.14、【解析】试题分析:∵四边形ABCD与四边形EFGH位似,位似中心点是点O,∴==,则===.故答案为.点睛:本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.15、35°【解析】试题分析:∵∠AOB=70°,∴∠C=∠AOB=35°.∵AB=AC,∴∠ABC=∠C=35°.故答案为35°.考点:圆周角定理.16、D【解析】
根据根的判别式得到关于a的方程,求解后可得到答案.【详解】关于x的方程有两个不相等的实数根,则解得:满足条件的最小整数的值为2.故选D.【点睛】本题考查了一元二次方程根与系数的关系,理解并能运用根的判别式得出方程是解题关键.17、.【解析】试题分析:sin15°=sin(60°﹣45°)=sin60°•cos45°﹣cos60°•sin45°==.故答案为.考点:特殊角的三角函数值;新定义.18、a>﹣.【解析】试题分析:已知关于x的方程2x2+x﹣a=0有两个不相等的实数根,所以△=12﹣4×2×(﹣a)=1+8a>0,解得a>﹣.考点:根的判别式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1);(2)见解析;(3)【解析】
(1)AB是⊙O的直径,AB=AC,可得∠ADB=90°,∠ADF=∠B,可求得tan∠ADF的值;(2)连接OD,由已知条件证明AC∥OD,又DE⊥AC,可得DE是⊙O的切线;(3)由AF∥OD,可得△AFE∽△ODE,可得后求得EF的长.【详解】解:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴∠BAD=∠CAD,∵DE⊥AC,∴∠AFD=90°,∴∠ADF=∠B,∴tan∠ADF=tan∠B==;(2)连接OD,∵OD=OA,∴∠ODA=∠OAD,∵∠OAD=∠CAD,∴∠CAD=∠ODA,∴AC∥OD,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线;(3)设AD=x,则BD=2x,∴AB=x=10,∴x=2,∴AD=2,同理得:AF=2,DF=4,∵AF∥OD,∴△AFE∽△ODE,∴,∴=,∴EF=.【点睛】本题考查切线的证明及圆与三角形相似的综合,为中考常考题型,需引起重视.20、见详解【解析】
根据角平分线的定义可得∠ABD=∠CBD,然后利用“边角边”证明△ABD和△CBD全等,根据全等三角形对应角相等可得∠ADB=∠CDB,然后根据角平分线上的点到角的两边的距离相等证明即可.【详解】证明:∵BD为∠ABC的平分线,
∴∠ABD=∠CBD,
在△ABD和△CBD中,∴△ABD≌△CBD(SAS),
∴∠ADB=∠CDB,
∵点P在BD上,PM⊥AD,PN⊥CD,
∴PM=PN.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB是解题的关键.21、2.7米.【解析】
先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.【详解】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.2米,∴AB2=0.72+2.22=6.1.在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B′2,∴BD2+1.52=6.1,∴BD2=2.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.答:小巷的宽度CD为2.7米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.22、(1)=﹣100x+50000;(2)该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.【解析】【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,33≤x≤60,①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足33≤x≤60的整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.23、3.05米【解析】
延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到正确结论.【详解】解:如图:延长FE交CB的延长线于M,过A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC•tan60°=1.5×1.73=2.595,∴GM=AB=2.595,在Rt△AGF中,∵∠FAG=∠FHE=45°,sin∠FAG=,∴sin45°=,∴FG=1.76,∴DM=FG+GM﹣DF≈3.05米.答:篮框D到地面的距离是3.05米.【点睛】本题主要考查直角三角形和三角函数,构造合适的辅助线是本题解题的关键.24、AC=6.0km,AB=1.7km;【解析】
在Rt△AOC,由∠的正切值和OC的长求出OA,在Rt△BOC,由∠BCO的大小和OC的长求出OA,而AB=OB-0A,即可得到答案。【详解】由题意可得:∠AOC=90°,OC=5km.在Rt△AOC中,∵AC=,∴AC=≈6.0km,∵tan34°=,∴OA=OC•tan34°=5×0.67=3.35km,在Rt△BOC中,∠BCO=45°,∴OB=OC=5km,∴AB=5﹣3.35=1.65≈1.7km.答:AC的长为6.0km,AB的长为1.7km.【点睛】本题主要考查三角函数的知识。25、(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.【解析】
(1)售单价每上涨1元,每天销售量减少10本,则售单价每上涨(x﹣44)元,每天销售量减少10(x﹣44)本,所以y=300﹣10(x﹣44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;(2)利用每本的利润乘以销售量得到总利润得到(x﹣40)(﹣10x+740)=2400,然后解方程后利用x的范围确定销售单价;(3)利用每本的利润乘以销售量得到总利润得到w=(x﹣40)(﹣10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.【详解】(1)y=300﹣10(x﹣44),即y=﹣10x+740(44≤x≤52);(2)根据题意得(x﹣40)(﹣10x+740)=2400,解得x1=50,x2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)w=(x﹣40)(﹣10x+740)=﹣10x2+1140x﹣29600=﹣10(x﹣57)2+2890,当x<57时,w随x的增大而增大,而44≤x≤52,所以当x=52时,w有最大值,最大值为﹣10(52﹣57)2+2890=2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.【点睛】本题考查了二次函数的应用,一元二次方程的应用,解决二次函数应用类问题时关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围.26、(1)m=-1,n=-1;(2)y=-x+【解析】
(1)由直线与双曲线相交于A(-1,a)、B两点可得B点横坐标为1,点C的坐标为(1,0),再根据△AOC的面积为1可求得点A的坐标,从而求得结果;(2)设直线AC的解析式为y=kx+b,由图象过点A(-1,1)、C(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度农村道路照明设施改造合同
- 2024年房屋买卖合同及相关附加条款2篇
- 2024年度技术转让合同(具体技术内容、转让价格和保密条款)2篇
- 2024年度影视作品制作及版权转让合同2篇
- 2024年基础教育学校教师聘用合同2篇
- 2024年度影视制作基地建设与租赁合同
- 二零二四年度园林绿化保险合同2篇
- 2024年度生态农业项目合作开发合同
- 二零二四年智能电网监控系统建设合同3篇
- 2024年度体育场馆建设用沙石料供应协议3篇
- 2024年天津市专业技术人员继续教育公需课考试题+答案 (四套全)
- 冬季体育课安全注意事项
- 小学科学教师专业技能大赛评分标准表
- 矿安益204题库2024版
- 6主题班会:我的偶像省公开课金奖全国赛课一等奖微课获奖课件
- 注塑产品工艺
- 高中数学学习方法指导课件
- 少儿围棋专注力培训课件
- 劳动争议处理理论知识考核试题及答案
- 农村水塘维修申请报告
- 基于labview的闹钟课程设计样本
评论
0/150
提交评论