版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省株洲市醴陵第二中学、醴陵第四中学2024届高一下数学期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在等差数列an中,a1+a2A.2n B.2n+1 C.2n-1 D.2n+22.甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到应等乙半小时,而乙还有其他安排,若他早到则不需等待,则甲、乙两人能见面的概率()A. B. C. D.3.已知数列,其前n项和为,且,则的值是()A.4 B.8 C.2 D.94.若点共线,则的值为()A. B. C. D.5.已知是球O的球面上四点,面ABC,,则该球的半径为()A. B. C. D.6.函数的最小正周期是()A. B. C. D.7.已知向量,,则向量在向量方向上的投影为()A. B. C. D.8.在中,,是的内心,若,其中,动点的轨迹所覆盖的面积为()A. B. C. D.9.定义平面凸四边形为平面上没有内角度数大于的四边形,在平面凸四边形中,,,,,设,则的取值范围是()A. B. C. D.10.若点在点的北偏东70°,点在点的南偏东30°,且,则点在点的()方向上.A.北偏东20° B.北偏东30° C.北偏西30° D.北偏西15°二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的定义域为,则实数的取值范围为_____.12.已知扇形的面积为,圆心角为,则该扇形半径为__________.13.设,数列满足,,将数列的前100项从大到小排列得到数列,若,则k的值为______;14.已知数列中,,当时,,数列的前项和为_____.15.函数的图象在点处的切线方程是,则__________.16.已知函数,若,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)求取出的两个球上标号为相同数字的概率;(2)若两人分别从甲、乙两个盒子中各摸出一球,规定:两人谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),这样规定公平吗?请说明理由.18.已知圆.(1)求圆的半径和圆心坐标;(2)斜率为的直线与圆相交于、两点,求面积最大时直线的方程.19.已知函数.(1)求函数的最小正周期和单调增区间;(2)求函数在区间上的最小值以及取得该最小值时的值.20.已知数列的前项和为,满足,数列满足.(1)求数列、的通项公式;(2),求数列的前项和;(3)对任意的正整数,是否存在正整数,使得?若存在,请求出的所有值;若不存在,请说明理由.21.如图,平行四边形中,是的中点,交于点.设,.(1)分别用,表示向量,;(2)若,,求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
直接利用等差数列公式解方程组得到答案.【详解】aaa1故答案选C【点睛】本题考查了等差数列的通项公式,属于基础题型.2、A【解析】设甲到达时刻为,乙到达时刻为,依题意列不等式组为,画出可行域如下图阴影部分,故概率为.3、A【解析】
根据求解.【详解】由题得.故选:A【点睛】本题主要考查数列和的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.4、A【解析】
通过三点共线转化为向量共线,即可得到答案.【详解】由题意,可知,又,点共线,则,即,所以,故选A.【点睛】本题主要考查三点共线的条件,难度较小.5、D【解析】
根据面,,得到三棱锥的三条侧棱两两垂直,以三条侧棱为棱长得到一个长方体,且长方体的各顶点都在该球上,长方体的对角线的长就是该球的直径,从而得到答案。【详解】面,三棱锥的三条侧棱,,两两垂直,可以以三条侧棱,,为棱长得到一个长方体,且长方体的各顶点都在该球上,长方体的对角线的长就是该球的直径,即则该球的半径为故答案选D【点睛】本题考查三棱锥外接球的半径的求法,本题解题的关键是以三条侧棱为棱长得到一个长方体,三棱锥的外接球,即为该长方体的外接球,利用长方体外接球的直径为长对角线的长,属于基础题。6、C【解析】
将函数化为,再根据周期公式可得答案.【详解】因为=,所以最小正周期.故选:C【点睛】本题考查了两角和的正弦公式的逆用,考查了正弦型函数的周期公式,属于基础题.7、B【解析】
先计算向量夹角,再利用投影定义计算即可.【详解】由向量,,则,,向量在向量方向上的投影为.故选:B【点睛】本题考查了向量数量积的坐标表示以及向量数量积的几何意义,属于基础题.8、A【解析】
由且,易知动点的轨迹为以为邻边的平行四边形的内部(含边界),在中,由,利用余弦定理求得边,再由和,求得内切圆的半径,从而得到,再由动点的轨迹所覆盖的面积得解.【详解】因为且,根据向量加法的平行四边形运算法则,所以动点的轨迹为以为邻边的平行四边形的内部(含边界),因为在中,,所以由余弦定理得:,所以,即,解得:,,所以.设的内切圆的半径为,所以所以.所以.所以动点的轨迹所覆盖的面积为:.故选:A【点睛】本题主要考查了动点轨迹所覆盖的面积的求及正弦定理,余弦定理的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.9、D【解析】
先利用余弦定理计算,设,将表示为的函数,再求取值范围.【详解】如图所示:在中,利用正弦定理:当时,有最小值为当时,有最大值为(不能取等号)的取值范围是故答案选D【点睛】本题考查了利用正余弦定理计算长度范围,将表示为的函数是解题的关键.10、A【解析】
作出方位角,根据等腰三角形的性质可得.【详解】如图,,,则,∵,∴,而,∴∴点在点的北偏东20°方向上.故选:A.【点睛】本题考查方位角概念,掌握方位角的定义是解题基础.方位角是以南北向为基础,北偏东,北偏西,南偏东,南偏西等等.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据对数的真数对于0,再结合不等式即可解决.【详解】函数的定义域为等价于对于任意的实数,恒成立当时成立当时,等价于综上可得【点睛】本题主要考查了函数的定义域以及不等式恒成立的问题,函数的定义域常考的由1、,2、,3、.属于基础题.12、2【解析】
将圆心角化为弧度制,再利用扇形面积得到答案.【详解】圆心角为扇形的面积为故答案为2【点睛】本题考查了扇形的面积公式,属于简单题.13、【解析】
根据递推公式利用数学归纳法分析出与的关系,然后考虑将的前项按要求排列,再根据项的序号计算出满足的值即可.【详解】由已知,a1=a,0<a<1;并且函数y=ax单调递减;∵∴1>a2>a1∴,∴a2>a3>a1∵,且∴a2>a4>a3>a1……当为奇数时,用数学归纳法证明,当时,成立,设时,,当时,因为,结合的单调性,所以,所以即,所以时成立,所以为奇数时,;当为偶数时,用数学归纳法证明,当时,成立,设时,,当时,因为,结合的单调性,所以,所以即,所以时成立,所以为偶数时,;用数学归纳法证明:任意偶数项大于相邻的奇数项即证:当为奇数,,当时,符合,设时,,当时,因为,结合的单调性,所以,所以,所以,所以时成立,所以当为奇数时,,据此可知:,当时,若,则有,此时无解;当时,此时的下标成首项为公差为的等差数列,通项即为,若,所以,所以.故答案为:.【点睛】本题考查数列与函数的综合应用,难度较难.(1)分析数列的单调性时,要注意到数列作为特殊的函数,其定义域为;(2)证明数列的单调性可从与的关系入手分析.14、.【解析】
首先利用数列的关系式的变换求出数列为等差数列,进一步求出数列的通项公式,最后求出数列的和.【详解】解:数列中,,当时,,整理得,即,∴数列是以为首项,6为公差的等差数列,故,所以,故答案为:.【点睛】本题主要考查定义法判断等差数列,考查等差数列的前项和,考查运算能力和推理能力,属于中档题.15、【解析】由导数的几何意义可知,又,所以.16、【解析】
由三角函数的辅助角公式化简,关键需得出辅助角的正切值,再由函数的最大值求解.【详解】由三角函数的辅助公式得(其中),因为所以,所以,所以,,所以,故填:【点睛】本题考查三角函数的辅助角公式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)这样规定公平,详见解析【解析】
(1)利用列举法求得基本事件的总数,利用古典概型的概率计算公式,即可求解;(2)利用古典概型及其概率的计算公式,求得的概率,即可得到结论.【详解】由题意,设从甲、乙两个盒子中各取1个球,其数字分别为x、y.用表示抽取结果,可得,则所有可能的结果有16种,(1)设“取出的两个球上的标号相同”为事件A,则,事件A由4个基本事件组成,故所求概率.(2)设“甲获胜”为事件B,“乙获胜”为事件C,则,.可得,即甲获胜的概率是,乙获胜的概率也是,所以这样规定公平.【点睛】本题主要考查了古典概型的概率的计算及应用,其中解答中认真审题,利用列举法求得基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题题.18、(1)圆的圆心坐标为,半径为;(2)或.【解析】
(1)将圆的方程化为标准方程,可得出圆的圆心坐标和半径;(2)设直线的方程为,即,设圆心到直线的距离,计算出直线截圆的弦长,利用基本不等式可得出的最大值以及等号成立时对应的的值,利用点的到直线的距离可解出实数的值.【详解】(1)将圆的方程化为标准方程得,因此,圆的圆心坐标为,半径为;(2)设直线的方程为,即,设圆心到直线的距离,则,且,的面积为,当且仅当时等号成立,由点到直线的距离公式得,解得或.因此,直线的方程为或.【点睛】本题考查圆的一般方程与标准方程之间的互化,以及直线截圆所形成的三角形的面积,解题时要充分利用几何法将直线截圆所得弦长表示出来,在求最值时,可利用基本不等式、函数的单调性来求解,考查分析问题和解决问题的能力,属于中等题.19、(1)最小正周期为,单调递增区间为;(2)当时,函数取最小值.【解析】
(1)利用三角恒等变换思想化简函数的解析式为,利用正弦型函数的周期公式可求得函数的最小正周期,解不等式可求得函数的单调递增区间;(2)由计算出的取值范围,再利用正弦函数的基本性质可求得该函数的最小值及其对应的值.【详解】(1),所以,函数的最小正周期为;令,得,所以函数的单调增区间为;(2)当时,,所以,当时,即当时,取得最小值,所以,函数在区间上的最小值为,此时.【点睛】本题考查正弦型函数的最小正周期和单调区间、最值的求解,解答的关键就是利用三角恒等变换思想化简函数解析式,考查计算能力,属于中等题.20、(1),;(2)见解析;(3)存在,.【解析】
(1)利用可得,从而可得为等比数列,故可得其通项公式.用累加法可求的通项.(2)利用分组求和法可求,注意就的奇偶性分类讨论.(3)根据的通项可得,故考虑的解可得满足条件的的值.【详解】(1)在数列中,当时,.当时,由得,因为,故,所以数列是以为首项,为公比的等比数列即.在数列中,当时,有,由累加法得,,.当时,也符合上式,所以.(2).当为偶数时,=;当为奇数时,=.(3)对任意的正整数,有,假设存在正整数,使得,则,令,解得,又为正整数,所以满足题意.【点睛】给定数列的递推关系,求数列的通项时,我们常需要对递推关系做变形构建新数列(新数列的通项容易求得),常见的递推关系、变形方法及求法如下:(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 尺骨冠突骨折治疗
- 邮政场地租赁合同示例
- 全面质量管理与医疗安全
- 中考模拟作文“尝过甜头之后”或“尝过苦头之后”导写及佳作展示
- 古诗三首 公开课一等奖创新教学设计(共两课时)
- 8升国旗 公开课一等奖创新教学设计
- 艾滋病入院指导
- 肺癌的治疗与护理
- 红星美凯龙活动方案
- 年产xxx防汛抢险专用机械项目建议书
- ipc9704应力测试标准对应国标
- 12.4国家宪法日学宪法讲宪法(课件)-小学生主题班会通用版(精修版)
- 飞机发动机原理与结构-涡轮
- (新版)铁路线路工中级理论考试题库
- 2023东北三省高三数学12月联考试卷含答案
- 注塑机作业程序全套
- 七年级下册英语单词默写表(直接打印)
- 施工门头施工方案
- 北京大学考博英语历年真题及详解
- 原料药主要工艺设备(釜、固液分离、真空泵、干燥)
- 小学数学-重叠问题教学课件设计
评论
0/150
提交评论