版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年湖南省衡阳县第三中学高一下数学期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点和点,是直线上的一点,则的最小值是()A. B. C. D.2.在正四棱柱中,,,则与所成角的余弦值为()A. B. C. D.3.下列函数中,在上存在最小值的是()A. B. C. D.4.已知是常数,那么“”是“等式对任意恒成立”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既不充分也不必要条件5.已知甲、乙两组数据用茎叶图表示如图所示,若它们的中位数相同,平均数也相同,则图中的的比值等于A. B. C. D.6.若向量的夹角为,且,,则向量与向量的夹角为()A. B. C. D.7.若,且,则下列不等式中正确的是()A. B. C. D.8.已知向量,,则()A.-1 B.-2 C.1 D.09.在ΔABC中,内角A,B,C所对的边分别为a,b,c.若a:b:c=3:4:5,则cosA.35 B.45 C.10.边长为的正方形中,点是的中点,点是的中点,将分别沿折起,使两点重合于,则直线与平面所成角的正弦值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.将边长为1的正方形ABCD沿对角线AC折起,使平面ACD⊥平面ABC,则折起后B,D两点的距离为________.12.化简sin2α+sin2β-sin2αsin2β+cos2αcos2β=______.13.若过点作圆的切线,则直线的方程为_______________.14.等比数列前n项和为,若,则______.15.已知点P是矩形ABCD边上的一动点,,,则的取值范围是________.16.在中,为上的一点,且,是的中点,过点的直线,是直线上的动点,,则_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的部分图象如图所示.(1)求的解析式;(2)求的单调增区间并求出取得最小值时所对应的x取值集合.18.已知直线经过点,斜率为1.(1)求直线的方程;(2)若直线与直线:的交点在第二象限,求的取值范围.19.已知函数为奇函数,且,其中,.(1)求,的值.(2)若,,求的值.20.已知,,且(1)求函数的解析式;(2)当时,的最小值是,求此时函数的最大值,并求出函数取得最大值时自变量的值21.已知函数.(1)求函数的单调递增区间;(2)当时,求函数的最大值和最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
求出A关于直线l:的对称点为C,则BC即为所求【详解】如下图所示:点,关于直线l:的对称点为C(0,2),连接BC,此时的最小值为故选D.【点睛】本题考查的知识点是两点间距离公式的应用,难度不大,属于中档题.2、A【解析】
连结,结合几何体的特征,直接求解与所成角的余弦值即可.【详解】如图所示:在正四棱柱中,=1,=2,连结,则与所成角就是中的,所以与所成角的余弦值为:==.故选A.【点睛】本题考查正四棱柱的性质,直线与直线所成角的求法,考查空间想象能力以及计算能力,属于基础题.3、A【解析】
结合初等函数的单调性,逐项判定,即可求解,得到答案.【详解】由题意,函数,当时,取得最小值,满足题意;函数在为单调递增函数,所以函数在区间无最小值,所以B不正确;函数在为单调递增函数,所以函数在区间无最小值,所以C不正确;函数在为单调递增函数,所以函数在区间无最小值,所以D不正确.故选:A.【点睛】本题主要考查了函数的最值问题,其中解答中熟记基本初等函数的单调性,合理判定是解答的关键,着重考查了推理与运算能力,属于基础题.4、B【解析】
由辅助角公式结合条件得出、的值,由结合同角三角函数得出、的值,于此可得出结论.【详解】由可得或,由辅助角公式,其中,.因此,“”是“等式对任意恒成立”的必要非充分条件,故选B.【点睛】本题考查必要不充分条件的判断,考查同角三角函数的基本关系以及辅助角公式的应用,考查推理能力,属于中等题.5、A【解析】
从茎叶图提取甲、乙两组数据中的原始数据,并按从小到大排列,分别得到中位数,并计算各自的平均数,再根据中位数、平均值相等得到关于的方程.【详解】甲组数据:,中位数为,乙组数据:,中位数为:,所以,所以,故选A.【点睛】本题考查中位数、平均数的概念与计算,对甲组数据排序时,一定是最大,乙组数据中一定是最小.6、B【解析】
结合数量积公式可求得、、的值,代入向量夹角公式即可求解.【详解】设向量与的夹角为,因为的夹角为,且,,所以,,所以,又因为所以,故选B【点睛】本题考查向量的数量积公式,向量模、夹角的求法,考查化简计算的能力,属基础题.7、D【解析】
利用不等式的性质依次对选项进行判断。【详解】对于A,当,且异号时,,故A不正确;对于B,当,且都为负数时,,故B不正确;对于C,取,则,故不正确;对于D,由于,,则,所以,即,故D正确;故答案选D【点睛】本题主要考查不等式的基本性质,在解决此类选择题时,可以用特殊值法,依次对选项进行排除。8、C【解析】
根据向量数量积的坐标运算,得到答案.【详解】向量,,所以.故选:C.【点睛】本题考查向量数量积的坐标运算,属于简单题.9、D【解析】
设a=3k,b=4k,c=5k,利用余弦定理求cosC的值.【详解】设a=3k,b=4k,c=5k,所以cosC=故选D【点睛】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平和分析推理能力.10、D【解析】
在正方形中连接,交于点,根据正方形的性质,在折叠图中平面,得到,从而平面,面平面,则是在平面上的射影,找到直线与平面所所成的角.然后在直角三角中求解.【详解】如图所示:在正方形中连接,交于点,在折叠图,连接,因为,所以平面,所以,又因为,所以平面,又因为平面,所以平面,则是在平面上的射影,所以即为所求.因为故选:D【点睛】本题主要考查了折叠图问题,还考查了推理论证和空间想象的能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、1.【解析】
取AC的中点E,连结DE,BE,可知DE⊥AC,由平面ACD⊥平面ABC,可得DE⊥平面ABC,DE⊥BE,而,再结合ABCD是正方形可求出.【详解】取AC的中点E,连结DE,BE,显然DE⊥AC,因为平面ACD⊥平面ABC,所以DE⊥平面ABC,所以DE⊥BE,而,所以,.【点睛】本题考查了空间中两点间的距离,把空间角转化为平面角是解决本题的关键.12、1【解析】原式=sin2α(1-sin2β)+sin2β+cos2αcos2β=sin2αcos2β+cos2αcos2β+sin2β=cos2β(sin2α+cos2α)+sin2β=1.13、或【解析】
讨论斜率不存在时是否有切线,当斜率存在时,运用点到直线距离等于半径求出斜率【详解】圆即①当斜率不存在时,为圆的切线②当斜率存在时,设切线方程为即,解得此时切线方程为,即综上所述,则直线的方程为或【点睛】本题主要考查了过圆外一点求切线方程,在求解过程中先讨论斜率不存在的情况,然后讨论斜率存在的情况,利用点到直线距离公式求出结果,较为基础。14、【解析】
根据等比数列的性质得到成等比,从而列出关系式,又,接着用表示,代入到关系式中,可求出的值.【详解】因为等比数列的前n项和为,则成等比,且,所以,又因为,即,所以,整理得.故答案为:.【点睛】本题考查学生灵活运用等比数列的性质化简求值,是一道基础题。解决本题的关键是根据等比数列的性质得到成等比.15、【解析】
如图所示,以为轴,为轴建立直角坐标系,故,,设.,根据几何意义得到最值,【详解】如图所示:以为轴,为轴建立直角坐标系,故,,设.则.表示的几何意义为到点的距离的平方减去.根据图像知:当为或的中点时,有最小值为;当与中的一点时有最大值为.故答案为:.【点睛】本题考查了向量的数量积的范围,转化为几何意义是解题关键.16、【解析】
用表示出,由对应相等即可得出.【详解】因为,所以解得得.【点睛】本题主要考查了平面向量的基本定理,以及向量的三角形法则,平面上任意不共线的一组向量可以作为一组基底.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)单调增区间为,();x取值集合,()【解析】
(1)先由函数的最大值求出的值,再由图中对称轴与相邻对称中心之间的距离得出最小正周期,于此得出,再将点代入函数的解析式结合的范围得出的值,于此可得出函数的解析式;(2)解不等式可得出函数的单调递增区间,由可求出函数取最小值时的取值集合.【详解】(1)由图象可知,.因为,所以.所以.解得.又因为函数的图象经过点,所以,解得.又因为,所以,所以.(2),,解得,,的单调增区间为,(),的最小值为-2,取得最小值时x取值集合,().【点睛】本题考查由三角函数图象求解析式,以及三角函数的基本性质问题,在利用图象求三角函数的解析式时,其基本步骤如下:(1)求、:,;(2)求:;(3)求:将顶点或对称中心点代入函数解析式求,但是在代对称中心点时需要结合函数在所找对称中心点附近的单调性来考查.18、(1);(2)【解析】
(1)由条件利用用点斜式求直线的方程.(2)联立方程组求出直线与直线的交点坐标,再根据交点在第二象限,求得的取值范围.【详解】解:(1)由直线经过点,斜率为1,利用点斜式可得直线的方程为,即.(2)由,解得,故直线与直线的交点坐标为.交点在第二象限,故有,解得,即的取值范围为.【点睛】本题主要考查用点斜式求直线的方程,求直线的交点坐标,属于基础题.19、(1);(2).【解析】试题分析:(1)先根据奇函数性质得y2=cos(2x+θ)为奇函数,解得θ=,再根据解得a(2)根据条件化简得sinα=,根据同角三角函数关系得cosα,最后根据两角和正弦公式求sin的值试题解析:(1)因为f(x)=(a+2cos2x)cos(2x+θ)是奇函数,而y1=a+2cos2x为偶函数,所以y2=cos(2x+θ)为奇函数,由θ∈(0,π),得θ=,所以f(x)=-sin2x·(a+2cos2x),由f=0得-(a+1)=0,即a=-1.(2)由(1)得f(x)=-sin4x,因为f=-sinα=-,即sinα=,又α∈,从而cosα=-,所以sin=sinαcos+cosαsin=×+×=.20、(1)(2)【解析】试题分析:(1)由向量的数量积运算代入点的坐标得到三角函数式,运用三角函数基本公式化简为的形式;(2)由定义域可得到的范围,结合函数单调性求得函数最值及对应
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年小学寒假计划范文
- 促进毕业生创业工作计划
- 个人08上半年度总结与08下半年计划
- 医院信息化工作总结和某年工作计划
- 分行创先争优工作计划
- 小学教学计划音乐汇编
- 总校学生会工作计划校学生会工作计划
- 2024年高三复习计划高三学习计划时间表
- 医生个人进修工作计划表
- 公司行政部下半年工作计划
- DL∕T 796-2012 风力发电场安全规程
- 输电线路工频参数测试仪校准规范
- 2024山西吕梁兴县政府购买公共服务人员招聘30人(高频重点提升专题训练)共500题附带答案详解
- 秸秆打包机租赁合同
- 某服饰公司商家自播抖音直播运营部门KPI绩效考核管理指标
- 非ST段抬高型急性冠脉综合征诊断和治疗指南(2024)解读
- (高清版)WST 408-2024 定量检验程序分析性能验证指南
- 人工智能原理与方法智慧树知到期末考试答案章节答案2024年哈尔滨工程大学
- 究天人之际通古今之变-高中历史教学时空观念素养的养成探究 论文
- 单位食堂美食节策划方案(2篇)
- 高中生研究性活动记录【6篇】
评论
0/150
提交评论