版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届云南省玉龙纳西族自治县一中数学高一下期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数在上是减函数,则实数的取值范围是()A. B. C. D.2.已知平行四边形对角线与交于点,设,,则()A. B. C. D.3.下列函数中,在上存在最小值的是()A. B. C. D.4.为了得到函数的图象,只需把函数的图象上所有的点A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度5.已知A(3,1),B(-1,2),若∠ACB的平分线方程为y=x+1,则AC所在的直线方程为()A.y=2x+4 B.y=x-3 C.x-2y-1=0 D.3x+y+1=06.设等比数列满足,,则()A.8 B.16 C.24 D.487.若正方体的棱长为,点,在上运动,,四面体的体积为,则()A. B. C. D.8.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.9.角的终边落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.一枚骰子连续投两次,则两次向上点数均为1的概率是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在数列中,若,(),则________12.已知等差数列,,,,则______.13.在中,角A,B,C所对的边分别为a,b,c,若的面积为,则的最大值为________.14.如图,正方体ABCD﹣A1B1C1D1的棱长为1,M为B1C1中点,连接A1B,D1M,则异面直线A1B和D1M所成角的余弦值为________________________.15.已知正实数满足,则的最小值为__________.16.若关于x的不等式ax2+bx+c<0的解集是{x|x<-2或x>-1},则关于x的不等式cx2+bx+a>0的解集是____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥P−ABCD中,AB//CD,且.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,,求二面角A−PB−C的余弦值.18.等差数列中,,.(1)求通项公式;(2)若,求的最小值.19.(已知函数.(I)求函数的最小正周期及在区间上的最大值和最小值;(II)若,求的值.20.已知数列的前项和();(1)判断数列是否为等差数列;(2)设,求;(3)设(),,是否存在最小的自然数,使得不等式对一切正整数总成立?如果存在,求出;如果不存在,说明理由;21.△ABC的内角A,B,C所对边分别为,已知△ABC面积为.(1)求角C;(2)若D为AB中点,且c=2,求CD的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据复合函数单调性,结合对数型函数的定义域列不等式组,解不等式组求得的取值范围.【详解】由于的底数为,而函数在上是减函数,根据复合函数单调性同增异减可知,结合对数型函数的定义域得,解得.故选:C【点睛】本小题主要考查根据对数型复合函数单调性求参数的取值范围,属于基础题.2、B【解析】
根据向量减法的三角形法则和数乘运算直接可得结果.【详解】本题正确选项:【点睛】本题考查向量的线性运算问题,涉及到向量的减法和数乘运算的应用,属于基础题.3、A【解析】
结合初等函数的单调性,逐项判定,即可求解,得到答案.【详解】由题意,函数,当时,取得最小值,满足题意;函数在为单调递增函数,所以函数在区间无最小值,所以B不正确;函数在为单调递增函数,所以函数在区间无最小值,所以C不正确;函数在为单调递增函数,所以函数在区间无最小值,所以D不正确.故选:A.【点睛】本题主要考查了函数的最值问题,其中解答中熟记基本初等函数的单调性,合理判定是解答的关键,着重考查了推理与运算能力,属于基础题.4、D【解析】试题分析:由题意,为得到函数的图象,只需把函数的图象上所有的点向右平行移动个单位长度,故选D.【考点】三角函数图象的平移【名师点睛】本题考查三角函数图象的平移,在函数的图象平移变换中要注意“”的影响,变换有两种顺序:一种的图象向左平移个单位得的图象,再把横坐标变为原来的倍,纵坐标不变,得的图象,另一种是把的图象横坐标变为原来的倍,纵坐标不变,得的图象,再向左平移个单位得的图象.5、C【解析】设点A(3,1)关于直线的对称点为,则,解得,即,所以直线的方程为,联立解得,即,又,所以边AC所在的直线方程为,选C.点睛:本题主要考查了直线方程的求法,属于中档题。解题时要结合实际情况,准确地进行求解。6、A【解析】
利用等比数列的通项公式即可求解.【详解】设等比数列的公比为,则,解得所以.故选:A【点睛】本题考查了等比数列的通项公式,需熟记公式,属于基础题.7、C【解析】
由题意得,到平面的距离不变=,且,即可得三棱锥的体积,利用等体积法得.【详解】正方体的棱长为,点,在上运动,,如图所示:点到平面的距离=,且,所以.所以三棱锥的体积=.利用等体积法得.故选:C.【点睛】本题考查了正方体的性质,等体积法求三棱锥的体积,属于基础题.8、C【解析】
通过三视图可以判断这一个是半个圆柱与半个圆锥形成的组合体,利用圆柱和圆锥的体积公式可以求出这个组合体的体积.【详解】该几何体为半个圆柱与半个圆锥形成的组合体,故,故选C.【点睛】本题考查了利用三视图求组合体图形的体积,考查了运算能力和空间想象能力.9、C【解析】
由,即可判断.【详解】,则与的终边相同,则角的终边落在第三象限故选:C【点睛】本题主要考查了判断角的终边所在象限,属于基础题.10、D【解析】
连续投两次骰子共有36种,求出满足情况的个数,即可求解.【详解】一枚骰子投一次,向上的点数有6种,则连续投两次骰子共有36种,两次向上点数均为1的有1种情况,概率为.故选:D.【点睛】本题考查古典概型的概率,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由题意,得到数列表示首项为1,公差为2的等差数列,结合等差数列的通项公式,即可求解.【详解】由题意,数列中,满足,(),即(),所以数列表示首项为1,公差为2的等差数列,所以.故答案为:【点睛】本题主要考查了等差数列的定义和通项公式的应用,其中解答中熟记等差数列的定义,合理利用数列的通项公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】
利用等差中项的基本性质求得,,并利用等差中项的性质求出的值,由此可得出的值.【详解】由等差中项的性质可得,同理,由于、、成等差数列,所以,则,因此,.故答案为:.【点睛】本题考查利用等差中项的性质求值,考查计算能力,属于基础题.13、【解析】
先求得的值,再利用两角和差的三角公式和正弦函数的最大值,求得的最大值.【详解】中,若的面积为,,.,当且仅当时,取等号,故的最大值为,故答案为:.【点睛】本题主要两角和差的三角公式的应用和正弦函数的最大值,属于基础题.14、.【解析】
连接、,取的中点,连接,可知,且是以为腰的等腰三角形,然后利用锐角三角函数可求出的值作为所求的答案.【详解】如下图所示:连接、,取的中点,连接,在正方体中,,则四边形为平行四边形,所以,则异面直线和所成的角为或其补角,易知,由勾股定理可得,,为的中点,则,在中,,因此,异面直线和所成角的余弦值为,故答案为.【点睛】本题考查异面直线所成角的余弦值的计算,求解异面直线所成的角一般利用平移直线法求解,遵循“一作、二证、三计算”,在计算时,一般利用锐角三角函数的定义或余弦定理求解,考查计算能力,属于中等题.15、6【解析】
由题得,解不等式即得x+y的最小值.【详解】由题得,所以,所以,所以x+y≥6或x+y≤-2(舍去),所以x+y的最小值为6.当且仅当x=y=3时取等.故答案为:6【点睛】本题主要考查基本不等式求最值,意在考查学生对该知识的理解掌握水平和分析推理能力.16、{x|-1<x<-}【解析】
观察两个不等式的系数间的关系,得出其根的关系,再由和的正负可得解.【详解】由已知可得:的两个根是和,且将方程两边同时除以,得,所以的两个根是和,且解集是故得解.【点睛】本题考查一元二次方程和一元二次不等式间的关系,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】
(1)由已知,得AB⊥AP,CD⊥PD.由于AB//CD,故AB⊥PD,从而AB⊥平面PAD.又AB平面PAB,所以平面PAB⊥平面PAD.(2)在平面内作,垂足为,由(1)可知,平面,故,可得平面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)及已知可得,,,.所以,,,.设是平面的法向量,则即可取.设是平面的法向量,则即可取.则,所以二面角的余弦值为.【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.18、(1);(2)【解析】
(1)等差数列中,由,,能求出通项公式.(2)利用等差数列前项和公式得到不等式,即可求出的最小值.【详解】解:(1)等差数列中,,.通项公式,即(2),,解得(舍去或,,的最小值为1.【点睛】本题考查等差数列的通项公式、项数的求法,考查等差数列的性质等基础知识,考查运算求解能力,属于基础题.19、函数在区间上的最大值为2,最小值为-1【解析】试题分析:(1)将函数利用倍角公式和辅助角公式化简为,再利用周期可得最小正周期,由找出对应范围,利用正弦函数图像可得值域;(2)先利用求出,再由角的关系展开后代入可得值.试题解析:(1)所以又所以由函数图像知.(2)解:由题意而所以所以所以=.考点:三角函数性质;同角间基本关系式;两角和的余弦公式20、(1)否;(2);(3);【解析】
(1)根据数列中与的关系式,即可求解数列的通项公式,再结合等差数列的定义,即可求解;(2)由(1)知,求得当时,,当时,,利用等差数列的前项和公式,分类讨论,即可求解.(3)由(1)得到当时,,当时,,结合裂项法,求得,即可求解.【详解】(1)由题意,数列的前项和(),当时,,当,所以数列的通项公式为,所以数列不是等差数列.(2)由(1)知,令,解得,所以当时,,当时,,①当时,②当时,综上可得.(3)由(1)可得,当时,,当时,,,要使得不等式对一切正整数总成立,则,即.【点睛】本题主要考查了数列中与的关系式,等差数列的定义,数列的绝对值的和,以及“裂项法”的综合应用,着重考查了分析问题和解答问题的能力,以及推理与计算能力,试题有一定的综合性,属于中档试题.21、(1)(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林师范大学《教育哲学》2021-2022学年第一学期期末试卷
- 吉林师范大学《工程制图及CAD》2021-2022学年第一学期期末试卷
- 吉林师范大学《二维动画特效》2021-2022学年第一学期期末试卷
- 大学微生物实验室使用管理制度
- 家庭阳台卷帘门安装方案
- 高等教育师德师风建设总结
- 中小学素质教育评估管理方案
- 2024回迁房购买合同范文
- 一年级家长会班主任发言稿与家长沟通策略
- 2024质押反担保合同范本与纠纷案例
- 工程代收款付款协议书范文模板
- 全套教学课件《工程伦理学》
- 雾化吸入疗法的用药指南2024课件
- GB/T 42455.2-2024智慧城市建筑及居住区第2部分:智慧社区评价
- 地 理期中测试卷(一) 2024-2025学年地理湘教版七年级上册
- 2024年山东济南轨道交通集团限公司招聘95人历年高频难、易错点500题模拟试题附带答案详解
- 江苏省建筑与装饰工程计价定额(2014)电子表格版
- 华为财务管理(6版)-华为经营管理丛书
- 框架结构冬季施工方案
- 装配式挡土墙施工方案(完整版)
- 防炫(AG工艺)玻璃屏项目可行性研究报告模版
评论
0/150
提交评论