新疆维吾尔自治区阿克苏地区库车县乌尊镇中学2025届数学高一下期末考试模拟试题含解析_第1页
新疆维吾尔自治区阿克苏地区库车县乌尊镇中学2025届数学高一下期末考试模拟试题含解析_第2页
新疆维吾尔自治区阿克苏地区库车县乌尊镇中学2025届数学高一下期末考试模拟试题含解析_第3页
新疆维吾尔自治区阿克苏地区库车县乌尊镇中学2025届数学高一下期末考试模拟试题含解析_第4页
新疆维吾尔自治区阿克苏地区库车县乌尊镇中学2025届数学高一下期末考试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆维吾尔自治区阿克苏地区库车县乌尊镇中学2025届数学高一下期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则等于()A. B. C. D.2.已知某几何体的三视图如图所示,则该几何体的表面积为()A. B. C. D.3.某四棱锥的三视图如图所示,则它的最长侧棱的长为()A. B. C. D.44.的周期为()A. B. C. D.5.直线l:3x+4y+5=0被圆M:(x–2)2+(y–1)2=16截得的弦长为()A. B.5 C. D.106.设等比数列{an}的前n项和为Sn,若S6A.73 B.2 C.87.在中,,则的形状是()A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰或直角三角形8.某种彩票中奖的概率为,这是指A.买10000张彩票一定能中奖B.买10000张彩票只能中奖1次C.若买9999张彩票未中奖,则第10000张必中奖D.买一张彩票中奖的可能性是9.已知直线与直线平行,则实数m的值为()A.3 B.1 C.-3或1 D.-1或310.若等差数列和的公差均为,则下列数列中不为等差数列的是()A.(为常数) B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知实数满足则的最小值为__________.12.已知角的终边上一点P落在直线上,则______.13.若,则=_________14.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.15.当实数a变化时,点到直线的距离的最大值为_______.16.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高,,三组内的学生中,用分层抽样的方法抽取18人参加一项活动,则从身高在内的学生中抽取的人数应为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,墙上有一壁画,最高点离地面4米,最低点离地面2米,观察者从距离墙米,离地面高米的处观赏该壁画,设观赏视角(1)若问:观察者离墙多远时,视角最大?(2)若当变化时,求的取值范围.18.如图,在平行四边形中,边所在直线的方程为,点.(Ⅰ)求直线的方程;(Ⅱ)求边上的高所在直线的方程.19.已知向量,,.(1)求(2)若与垂直,求实数的值.20.2021年广东新高考将实行“”模式,即语文、数学、英语必选,物理、历史二选一,政治、地理、化学、生物四选二,共选六科参加高考.其中偏理方向是二选一时选物理,偏文方向是二选一时选历史,对后四科选择没有限定.(1)小明随机选课,求他选择偏理方向及生物学科的概率;(2)小明、小吴同时随机选课,约定选择偏理方向及生物学科,求他们选课相同的概率.21.如图,制图工程师要用两个同中心的边长均为4的正方形合成一个八角形图形,由对称性,图中8个三角形都是全等的三角形,设.(1)试用表示的面积;(2)求八角形所覆盖面积的最大值,并指出此时的大小.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:,.考点:三角恒等变形、诱导公式、二倍角公式、同角三角函数关系.2、B【解析】

由三视图判断该几何体是有三条棱两两垂直是三棱锥,结合三视图的数据可得结果.【详解】由三视图可得该几何体是如图所示的三棱锥,其中AB,BC,BP两两垂直,且,则和的面积都是1,的面积为2,在中,,则的面积为,所以该几何体的表面积为,故选:B.【点睛】三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.3、C【解析】

由三视图可知:底面,,底面是一个直角梯形,,,均为直角三角形,判断最长的棱,通过几何体求解即可.【详解】由三视图可知:该几何体如图所示,则底面,,底面是一个直角梯形,其中,,,,可得,,均为直角三角形,最长的棱是,.故选:C.【点睛】本题考查了三视图,线面垂直的判定与性质定理,考查了推理能力与计算能力,属于基础题.4、D【解析】

根据正弦型函数最小正周期的结论即可得到结果.【详解】函数的最小正周期故选:【点睛】本题考查正弦型函数周期的求解问题,关键是明确正弦型函数的最小正周期.5、C【解析】

求出圆心到直线l的距离,再利用弦长公式进行求解即可.【详解】∵圆(x–2)2+(y–1)2=16,∴圆心(2,1),半径r=4,圆心到直线l:3x+4y+5=0的距离d==3,∴直线3x+4y+5=0被圆(x–2)2+(y–1)2=16截得的弦长l=2=2.故选C.【点睛】本题考查了直线被圆截得的弦长公式,主要用到了点到直线的距离公式.6、A【解析】解:因为等比数列{an}的前n项和为Sn,则Sn,S2n-Sn,S3n-S2n成等比,(Sn≠0)所以S67、B【解析】

将,分别代入中,整理可得,即可得到,进而得到结论【详解】由题可得,即在中,,,即又,是直角三角形,故选B【点睛】本题考查三角形形状的判定,考查和角公式,考查已知三角函数值求角8、D【解析】

彩票中奖的概率为,只是指中奖的可能性为【详解】彩票中奖的概率为,只是指中奖的可能性为,不是买10000张彩票一定能中奖,概率是指试验次数越来越大时,频率越接近概率.所以选D.【点睛】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,是否中奖是随机事件.9、B【解析】

两直线平行应该满足,利用系数关系及可解得m.【详解】两直线平行,可得(舍去).选B.【点睛】两直线平行的一般式对应关系为:,若是已知斜率,则有,截距不相等.10、D【解析】

利用等差数列的定义对选项逐一进行判断,可得出正确的选项.【详解】数列和是公差均为的等差数列,则,,.对于A选项,,数列(为常数)是等差数列;对于B选项,,数列是等差数列;对于C选项,,所以,数列是等差数列;对于D选项,,不是常数,所以,数列不是等差数列.故选:D.【点睛】本题考查等差数列的定义和通项公式,注意等差数列定义的应用,考查推理能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

本题首先可以根据题意绘出不等式组表示的平面区域,然后结合目标函数的几何性质,找出目标函数取最小值所过的点,即可得出结果。【详解】绘制不等式组表示的平面区域如图阴影部分所示,结合目标函数的几何意义可知,目标函数在点处取得最小值,即。【点睛】本题考查根据不等式组表示的平面区域来求目标函数的最值,能否绘出不等式组表示的平面区域是解决本题的关键,考查数形结合思想,是简单题。12、【解析】

由于角的终边上一点P落在直线上,可得,根据二倍角公式以及三角函数基本关系,可得,代入,可求得结果.【详解】因为角的终边上一点P落在直线上,所以,.故答案为:【点睛】本题考查同角三角函数的基本关系,巧用“1”是解决本题的关键.13、【解析】

∵,∴∴=1×[+]=1.故答案为:1.14、【解析】

试题分析:由三视图知,几何体是一个四棱锥,四棱锥的底面是一个正方形,边长是2,四棱锥的一条侧棱和底面垂直,且这条侧棱长是2,这样在所有的棱中,连接与底面垂直的侧棱的顶点与相对的底面的顶点的侧棱是最长的长度是,考点:三视图点评:本题考查由三视图还原几何体,所给的是一个典型的四棱锥,注意观察三视图,看出四棱锥的一条侧棱与底面垂直.15、【解析】

由已知直线方程求得直线所过定点,再由两点间的距离公式求解.【详解】由直线,得,联立,解得.直线恒过定点,到直线的最大距离.故答案为:.【点睛】本题考查点到直线距离最值的求法,考查直线的定点问题,是基础题.16、3【解析】

先由频率之和等于1得出的值,计算身高在,,的频率之比,根据比例得出身高在内的学生中抽取的人数.【详解】身高在,,的频率之比为所以从身高在内的学生中抽取的人数应为故答案为:【点睛】本题主要考查了根据频率分布直方图求参数的值以及分层抽样计算各层总数,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)3≤x≤1.【解析】试题分析:(1)利用两角差的正切公式建立函数关系式,根据基本不等式求最值,最后根据正切函数单调性确定最大时取法,(2)利用两角差的正切公式建立等量关系式,进行参变分离得,再根据a的范围确定范围,最后解不等式得的取值范围.试题解析:(1)当时,过作的垂线,垂足为,则,且,由已知观察者离墙米,且,则,所以,,当且仅当时,取“”.又因为在上单调增,所以,当观察者离墙米时,视角最大.(2)由题意得,,又,所以,所以,当时,,所以,即,解得或,又因为,所以,所以的取值范围为.18、解:(Ⅰ)∵是平行四边形直线CD的方程是,即(Ⅱ)∵CE⊥ABCE所在直线方程为,.【解析】略19、(1)-44;(2)【解析】

(1)利用已知条件求出,然后由向量的数量积坐标表示即可求出.(2)利用向量的垂直数量积为0,列出方程,求解即可.【详解】(1)由题意得:,;(2)由与垂直得:,即,即,解得:.【点睛】本题主要考查向量的数量积的求法与应用.20、(1);(2)【解析】

(1)利用列举法,列举出偏理方向和偏文方向的所有情况,即可求得小明选择偏理方向且选择了生物学科的概率.(2)利用列举法,列举出两个人选择偏理方向且带有生物学科的所有可能,即可求得两人选课相同的概率.【详解】(1)由题意知,选六科参加高考有偏理方向:(物,政,地)、(物,政,化)、(物,政,生)、(物,地,化)、(物,地,生)、(物,化,生)六种选择;偏文方向有:(史,政,地)、(史,政,化)、(史,政,生)、(史,地,化)、(史,地,生)、(史,化,生)六种选择.由以上可知共有12种选课模式.小明选择偏理方向又选择生物的概率为.(2)小明选择偏理且有生物学科的可能有:(物,政,生)、(物,地,生)、(物,化,生)三种选择,同样小吴也是三种选择;两人选课模式有:[(物,政,生),(物,政,生)]、[(物,政,生),(物,地,生]、[(物,政,生),(物,化,生)]、[(物,地,生),(物,政,生)]、[(物,地,生),(物,地,生)[(物,地,生),(物,化,生)]、[(物,化,生),(物,政,生)]、[(物,化,生),(物,地,生)[(物,化,生),(物,化,生)]由以上可知共有9种选课法,两人选课相同有三种,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论