版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省深圳罗湖区四校联考中考数学模试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列函数中,y随着x的增大而减小的是()A.y=3x B.y=﹣3x C. D.2.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是()A. B. C. D.3.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是已知:如图,在中,点D,E,F分别在边AB,AC,BC上,且,,求证:∽.证明:又,,,,∽.A. B. C. D.4.山西有着悠久的历史,远在100多万年前就有古人类生息在这块土地上.春秋时期,山西大部分为晋国领地,故山西简称为“晋”,战国初韩、赵、魏三分晋,山西又有“三晋”之称,下面四个以“晋”字为原型的Logo图案中,是轴对称图形的共有()A. B. C. D.5.-4的绝对值是()A.4 B. C.-4 D.6.下列各式中,正确的是()A.﹣(x﹣y)=﹣x﹣y B.﹣(﹣2)﹣1= C.﹣ D.7.甲、乙两人参加射击比赛,每人射击五次,命中的环数如下表:次序第一次第二次第三次第四次第五次甲命中的环数(环)67868乙命中的环数(环)510767根据以上数据,下列说法正确的是()A.甲的平均成绩大于乙 B.甲、乙成绩的中位数不同C.甲、乙成绩的众数相同 D.甲的成绩更稳定8.如图,直线a∥b,直线c与直线a、b分别交于点A、点B,AC⊥AB于点A,交直线b于点C.如果∠1=34°,那么∠2的度数为()A.34° B.56° C.66° D.146°9.已知一组数据2、x、8、1、1、2的众数是2,那么这组数据的中位数是()A.3.1;B.4;C.2;D.6.1.10.计算:得()A.- B.- C.- D.11.的负倒数是()A. B.- C.3 D.﹣312.下列图形中,既是中心对称,又是轴对称的是()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式≥-1的正整数解为________________.14.如图,AB∥CD,BE交CD于点D,CE⊥BE于点E,若∠B=34°,则∠C的大小为________度.15.关于x的方程kx2﹣(2k+1)x+k+2=0有实数根,则k的取值范围是_____.16.在2018年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为_____.17.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长度为_____18.1017年11月7日,山西省人民政府批准发布的《山西省第一次全国地理国情普查公报》显示,山西省国土面积约为156700km1,该数据用科学记数法表示为__________km1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在一个不透明的布袋中装两个红球和一个白球,这些球除颜色外均相同(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是.(2)甲、乙、丙三人依次从袋中摸出一个球,记录颜色后不放回,试求出乙摸到白球的概率20.(6分)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.21.(6分)将二次函数的解析式化为的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.22.(8分)如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的长度.(结果精确到0.1cm)23.(8分)如图,在△ABC中,∠BAC=90°,AB=AC,D为AB边上一点,连接CD,过点A作AE⊥CD于点E,且交BC于点F,AG平分∠BAC交CD于点G.求证:BF=AG.24.(10分)如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).25.(10分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.26.(12分)如图是根据对某区初中三个年级学生课外阅读的“漫画丛书”、“科普常识”、“名人传记”、“其它”中,最喜欢阅读的一种读物进行随机抽样调查,并绘制了下面不完整的条形统计图和扇形统计图(每人必选一种读物,并且只能选一种),根据提供的信息,解答下列问题:(1)求该区抽样调查人数;(2)补全条形统计图,并求出最喜欢“其它”读物的人数在扇形统计图中所占的圆心角度数;(3)若该区有初中生14400人,估计该区有初中生最喜欢读“名人传记”的学生是多少人?27.(12分)甲、乙、丙3名学生各自随机选择到A、B2个书店购书.(1)求甲、乙2名学生在不同书店购书的概率;(2)求甲、乙、丙3名学生在同一书店购书的概率.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】试题分析:A、y=3x,y随着x的增大而增大,故此选项错误;B、y=﹣3x,y随着x的增大而减小,正确;C、,每个象限内,y随着x的增大而减小,故此选项错误;D、,每个象限内,y随着x的增大而增大,故此选项错误;故选B.考点:反比例函数的性质;正比例函数的性质.2、C【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N和点D重合之前以及点M和点B重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,AD=2,AB=4,则MN=t,当0≤t≤2时,AM=MN=t,则S=,为二次函数;当2≤t≤4时,S=t,为一次函数,故选C.点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.3、B【解析】
根据平行线的性质可得到两组对应角相等,易得解题步骤;【详解】证明:,,又,,∽.故选B.【点睛】本题考查了相似三角形的判定与性质;关键是证明三角形相似.4、D【解析】
根据轴对称图形的概念求解.【详解】A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确.
故选D.【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5、A【解析】
根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)【详解】根据绝对值的概念可得-4的绝对值为4.【点睛】错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆.6、B【解析】
A.括号前是负号去括号都变号;B负次方就是该数次方后的倒数,再根据前面两个负号为正;C.两个负号为正;D.三次根号和二次根号的算法.【详解】A选项,﹣(x﹣y)=﹣x+y,故A错误;B选项,﹣(﹣2)﹣1=,故B正确;C选项,﹣,故C错误;D选项,22,故D错误.【点睛】本题考查去括号法则的应用,分式的性质,二次根式的算法,熟记知识点是解题的关键.7、D【解析】
根据已知条件中的数据计算出甲、乙的方差,中位数和众数后,再进行比较即可.【详解】把甲命中的环数按大小顺序排列为:6,6,7,8,8,故中位数为7;把乙命中的环数按大小顺序排列为:5,6,7,7,10,故中位数为7;∴甲、乙成绩的中位数相同,故选项B错误;根据表格中数据可知,甲的众数是8环,乙的众数是7环,∴甲、乙成绩的众数不同,故选项C错误;甲命中的环数的平均数为:x甲乙命中的环数的平均数为:x乙∴甲的平均数等于乙的平均数,故选项A错误;甲的方差S甲2=15[(6−7)2+(7−7)2+(8−7)2+(6−7)2乙的方差=15[(5−7)2+(10−7)2+(7−7)2+(6−7)2+(7−7)2因为2.8>0.8,所以甲的稳定性大,故选项D正确.故选D.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.同时还考查了众数的中位数的求法.8、B【解析】分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.详解:∵直线a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B.点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.9、A【解析】∵数据组2、x、8、1、1、2的众数是2,∴x=2,∴这组数据按从小到大排列为:2、2、2、1、1、8,∴这组数据的中位数是:(2+1)÷2=3.1.故选A.10、B【解析】
同级运算从左向右依次计算,计算过程中注意正负符号的变化.【详解】-故选B.【点睛】本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.11、D【解析】
根据倒数的定义,互为倒数的两数乘积为1,2×=1.再求出2的相反数即可解答.【详解】根据倒数的定义得:2×=1.
因此的负倒数是-2.
故选D.【点睛】本题考查了倒数,解题的关键是掌握倒数的概念.12、C【解析】
根据中心对称图形,轴对称图形的定义进行判断.【详解】A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选C.【点睛】本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1,2,1.【解析】
去分母,移项,合并同类项,系数化成1即可求出不等式的解集,根据不等式的解集即可求出答案.【详解】,
∴1-x≥-2,
∴-x≥-1,
∴x≤1,
∴不等式的正整数解是1,2,1,
故答案为:1,2,1.【点睛】本题考查了解一元一次不等式和一元一次不等式的整数解,关键是求出不等式的解集.14、56【解析】
解:∵AB∥CD,∴又∵CE⊥BE,∴Rt△CDE中,故答案为56.15、k≤.【解析】
分k=1及k≠1两种情况考虑:当k=1时,通过解一元一次方程可得出原方程有解,即k=1符合题意;等k≠1时,由△≥1即可得出关于k的一元一次不等式,解之即可得出k的取值范围.综上此题得解.【详解】当k=1时,原方程为-x+2=1,解得:x=2,∴k=1符合题意;当k≠1时,有△=[-(2k+1)]2-4k(k+2)≥1,解得:k≤且k≠1.综上:k的取值范围是k≤.故答案为:k≤.【点睛】本题考查了根的判别式以及一元二次方程的定义,分k=1及k≠1两种情况考虑是解题的关键.16、3.05×105【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】305000=3.05×故答案为:3.05×10【点睛】本题考查的知识点是科学记数法—表示较大的数,解题关键是熟记科学计数法的表示方法.17、【解析】
分析题意,如图所示,连接BF,由翻折变换可知,BF⊥AE,BE=EF,由点E是BC的中点可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的长度即可【详解】如图,连接BF.∵△AEF是由△ABE沿AE折叠得到的,∴BF⊥AE,BE=EF.∵BC=6,点E为BC的中点,∴BE=EC=EF=3根据勾股定理有AE=AB+BE代入数据求得AE=5根据三角形的面积公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入数据求得CF=故答案为【点睛】此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质18、1.267×102【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于126700有6位,所以可以确定n=6﹣1=2.【详解】解:126700=1.267×102.故答案为1.267×102.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1);(2).【解析】
(1)直接利用概率公式求解;
(2)画树状图展示所有6种等可能的结果数,再找出乙摸到白球的结果数,然后根据概率公式求解.【详解】解:(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是;
故答案为:;
(2)画树状图为:
共有6种等可能的结果数,其中乙摸到白球的结果数为2,
所以乙摸到白球的概率==.【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.20、20°【解析】
依据三角形内角和定理可得∠FGH=55°,再根据GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根据∠FHG是△EFH的外角,即可得出∠EFB=55°-35°=20°.【详解】∵∠EFG=90°,∠E=35°,∴∠FGH=55°,∵GE平分∠FGD,AB∥CD,∴∠FHG=∠HGD=∠FGH=55°,∵∠FHG是△EFH的外角,∴∠EFB=55°﹣35°=20°.【点睛】本题考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.21、开口方向:向上;点坐标:(-1,-3);称轴:直线.【解析】
将二次函数一般式化为顶点式,再根据a的值即可确定该函数图像的开口方向、顶点坐标和对称轴.【详解】解:,,,∴开口方向:向上,顶点坐标:(-1,-3),对称轴:直线.【点睛】熟练掌握将一般式化为顶点式是解题关键.22、37【解析】试题分析:过点作交于点.构造直角三角形,在中,计算出,在中,计算出.试题解析:如图所示:过点作交于点.
在中,
又∵在中,
答:的长度为23、见解析【解析】
根据角平分线的性质和直角三角形性质求∠BAF=∠ACG.进一步证明△ABF≌△CAG,从而证明BF=AG.【详解】证明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,又∵AG平分∠BAC,∴∠GAC=∠BAC=45°,又∵∠BAC=90°,AE⊥CD,∴∠BAF+∠ADE=90°,∠ACG+∠ADE=90°,∴∠BAF=∠ACG.又∵AB=CA,∴∴△ABF≌△CAG(ASA),∴BF=AG【点睛】此题重点考查学生对三角形全等证明的理解,熟练掌握两三角形全等的证明是解题的关键.24、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.25、(1);(2)x>1;(3)P(﹣,0)或(,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x>0时,不等式x+b>的解集为x>1;(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,进而得出点P的坐标.详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=,可得k=1×3=3,∴y与x之间的函数关系式为:y=;(2)∵A(1,3),∴当x>0时,不等式x+b>的解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y2=x+b,可得3=+b,∴b=,∴y2=x+,令y2=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=BC=,或BP=BC=∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).点睛:本题考查了反比
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2019-2025年中国羊毛纱行业市场调研分析及投资战略咨询报告
- 高一学生学习计划15篇
- 一年级语文拼音教案
- 我的学习计划15篇
- 《童年》读后感(汇编15篇)
- 小班户外活动亲子踩垫子游戏教案
- 初一政治教学计划范文集锦六篇
- 公司年会活动方案模板锦集六篇
- 乒乓球比赛作文300字集合10篇
- 冀教版四年级科学上册第一单元《物体的运动》教案
- 广东省深圳市龙华区2023-2024学年中考适应性考试物理试题含解析
- 学宪法讲宪法知识竞赛活动方案
- MOOC 国际私法-暨南大学 中国大学慕课答案
- 《客舱安全与应急处置》-课件:应急撤离的原因和原则
- 前列腺电切术麻醉管理
- 2024年毕节市融资担保集团有限公司招聘笔试参考题库附带答案详解
- 椎管内肿瘤切除术的手术后护理
- 《粮油食品加工技术》课程标准
- 华硕电脑行业供应链的管理措施及策略
- 2023年普通高中体育课程标准
- 数控车削编程与加工(FANUC系统) 章节练习题及答案
评论
0/150
提交评论