版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省周口市郸城一高数学高一下期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在各项均为正数的等比数列中,公比.若,,,数列的前n项和为,则当取最大值时,n的值为()A.8 B.9 C.8或9 D.172.函数,,若对任意,存在,使得成立,则实数m的取值范围是()A. B. C. D.3.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,若要使织布的总尺数不少于30,该女子所需的天数至少为()A.7 B.8 C.9 D.104.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一.”就是说:圆堡瑽(圆柱体)的体积为:V=×(底面的圆周长的平方×高).则由此可推得圆周率的取值为()A.3 B.3.14 C.3.2 D.3.35.函数在的图像大致为A. B.C. D.6.已知数列满足,,则数列的前10项和为()A. B. C. D.7.在数列中,,,则的值为:A.52 B.51 C.50 D.498.已知平面向量,满足,,且,则与的夹角为()A. B. C. D.9.如图是某地某月1日至15日的日平均温度变化的折线图,根据该折线图,下列结论正确的是()A.这15天日平均温度的极差为B.连续三天日平均温度的方差最大的是7日,8日,9日三天C.由折线图能预测16日温度要低于D.由折线图能预测本月温度小于的天数少于温度大于的天数10.下列条件:①;②;③;其中一定能推出成立的有()A.0个 B.3个 C.2个 D.1个二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小正周期为________.12.已知直线与相互垂直,且垂足为,则的值为______.13.在上,满足的的取值范围是______.14.过P(1,2)的直线把圆分成两个弓形,当其中劣孤最短时直线的方程为_________.15.已知正实数x,y满足2x+y=2,则xy的最大值为______.16.无穷等比数列的首项是某个正整数,公比为单位分数(即形如:的分数,为正整数),若该数列的各项和为3,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列前n项和满足(1)求数列的通项公式;(2)求数列的前n项和.18.已知方程有两个实根,记,求的值.19.如图,在平面直角坐标系中,以轴为始边做两个锐角,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为(1)求的值;(2)求的值.20.在等差数列中,,,等比数列中,,.(1)求数列,的通项公式;(2)若,求数列的前n项和.21.已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】∵为等比数列,公比为,且∴∴,则∴∴∴,∴数列是以4为首项,公差为的等差数列∴数列的前项和为令当时,∴当或9时,取最大值.故选C点睛:(1)在解决等差数列、等比数列的运算问题时,有两个处理思路:一是利用基本量将多元问题简化为一元问题;二是利用等差数列、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差数列、等比数列问题的快捷方便的工具;(2)求等差数列的前项和最值的两种方法:①函数法:利用等差数列前项和的函数表达式,通过配方或借助图象求二次函数最值的方法求解;②邻项变号法:当时,满足的项数使得取得最大值为;当时,满足的项数使得取得最小值为.2、D【解析】,当时,对于∵对任意,存在,使得成立,,解得实数的取值范围是.
故选D.【点睛】本题考查三角函数恒等变换,其中解题时问题转化为求三角函数的值域并利用集合关系是解决问题的关键,3、B【解析】试题分析:设该女子第一天织布尺,则,解得,所以前天织布的尺数为,由,得,解得的最小值为,故选B.考点:等比数列的应用.4、A【解析】试题分析:由题意知圆柱体积×(底面的圆周长的平方×高),化简得:,故选A.考点:圆柱的体积公式.5、C【解析】
由解析式研究函数的性质奇偶性、特殊函数值的正负,可选择正确的图象.【详解】易知函数()是偶函数,图象关于轴对称,可排除BD,时,,可排除A.故选C.【点睛】本题考查由函数解析式选择函数图象,解题方法是由解析式分析函数的性质,如单调性、奇偶性、函数的极值、最值、特殊值、函数的值的正负等等.6、C【解析】
由判断出数列是等比数列,再求出,利用等比数列前项和公式求解即可.【详解】由,得,所以数列是以为公比的等比数列,又,所以,由等比数列前项和公式,.故选:C【点睛】本题主要考查等比数列的定义和等比数列前项和公式的应用,考查学生的计算能力,属于基础题.7、A【解析】
由,得到,进而得到数列首项为2,公差为的等差数列,利用等差数列的通项公式,即可求解,得到答案.【详解】由题意,数列满足,即,又由,所以数列首项为2,公差为的等差数列,所以,故选A.【点睛】本题主要考查了等差数列的定义,以及等差数列的通项公式的应用,其中解答中熟记等差数列的定义,以及等差数列的通项公式是解答的关键,着重考查了推理与运算能力,属于基础题.8、C【解析】
根据列方程,结合向量数量积的运算以及特殊角的三角函数值,求得与的夹角.【详解】由于,故,所以,所以,故选C.【点睛】本小题主要考查两个向量垂直的表示,考查向量数量积运算,考查特殊角的三角函数值,考查两个向量夹角的求法,属于基础题.9、B【解析】
利用折线图的性质,结合各选项进行判断,即可得解.【详解】由某地某月1日至15日的日平均温度变化的折线图,得:在中,这15天日平均温度的极差为:,故错误;在中,连续三天日平均温度的方差最大的是7日,8日,9日三天,故正确;在中,由折线图无法预测16日温度要是否低于,故错误;在中,由折线图无法预测本月温度小于的天数是否少于温度大于的天数,故错误.故选.【点睛】本题考查命题真假的判断,考查折线图的性质等基础知识,考查运算求解能力、数据处理能力,考查数形结合思想,是基础题.10、D【解析】
利用特殊值证得①②不一定能推出,利用平方差公式证得③能推出.【详解】对于①,若,而,故①不一定能推出;对于②,若,而,故②不一定能推出;对于③,由于,所以,故,也即.故③一定能推出.故选:D.【点睛】本小题主要考查不等式的性质,考查实数大小比较,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】
根据正切型函数的周期公式可计算出函数的最小正周期.【详解】由正切型函数的周期公式得,因此,函数的最小正周期为,故答案为.【点睛】本题考查正切型函数周期的求解,解题的关键在于正切型函数周期公式的应用,考查计算能力,属于基础题.12、【解析】
先由两直线垂直,可求出的值,将垂足点代入直线的方程可求出的点,再将垂足点代入直线的方程可求出的值,由此可计算出的值.【详解】,,解得,直线的方程为,即,由于点在直线上,,解得,将点的坐标代入直线的方程得,解得,因此,.故答案为:.【点睛】本题考查了由两直线垂直求参数,以及由两直线的公共点求参数,考查推理能力与计算能力,属于基础题.13、【解析】
由,结合三角函数线,即可求解,得到答案.【详解】如图所示,因为,所以满足的的取值范围为.【点睛】本题主要考查了特殊角的三角函数值,以及三角函数线的应用,着重考查了推理与运算能力,属于基础题.14、【解析】
首先根据圆的几何性质,可分析出当点是弦的中点时,劣弧最短,利用圆心和弦的中点连线与直线垂直,可求得直线方程.【详解】当劣弧最短时,即劣弧所对的弦最短,当点是弦的中点时,此时弦最短,也即劣弧最短,圆:,圆心,,,直线方程是,即,故填:.【点睛】本题考查了直线与圆的位置关系,以及圆的几何性质,属于基础题型.15、【解析】
由基本不等式可得,可求出xy的最大值.【详解】因为,所以,故,当且仅当时,取等号.故答案为.【点睛】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件.16、【解析】
利用无穷等比数列的各项和,可求得,从而,利用首项是某个自然数,可求,进而可求出.【详解】无穷等比数列各项和为3,,是个自然数,则,.故答案为:【点睛】本题主要考查了等比数列的前项和公式,需熟记公式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)利用当时,,当时,即可求解(2)由裂项相消求解即可【详解】(1)当时,,当时,.所以可得.(2)由题意知,可设则.【点睛】本题考查数列通项公式的求解,考查裂项相消求和,注意相消时提出系数和剩余项数,是中档题18、【解析】
求出的值和的范围即可【详解】因为,所以又有两个实根所以所以因为所以,所以所以所以故答案为:【点睛】1.要清楚反三角函数的定义域和值域,如的定义域为,值域为2.由三角函数的值求角时一定要判断出角的范围.19、(1)(2)【解析】
试题分析:(1)根据题意,由三角函数的定义可得与的值,进而可得出与的值,从而可求与的值就,结合两角和正切公式可得答案;(2)由两角和的正切公式,可得出的值,再根据的取值范围,可得出的取值范围,进而可得出的值.由条件得cosα=,cosβ=.∵α,β为锐角,∴sinα==,sinβ==.因此tanα==7,tanβ==.(1)tan(α+β)===-3.(2)∵tan2β===,∴tan(α+2β)===-1.∵α,β为锐角,∴0<α+2β<,∴α+2β=20、(1),(2)【解析】
(1)根据等差数列的通项公式求出首项,公差和等比数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机械制图课件清华
- 2024年度保险合同的保险责任与除外责任3篇
- 现代技术服务费合同5
- 2024年度医疗事故处理服务合同2篇
- 周大生百面钻石课件
- 物品买卖委托合同书
- 2024年度市场调研与竞争分析报告订购合同3篇
- 2024版技术转让合同的技术内容和转让价格3篇
- 2024年度建筑项目工程设计变更合同3篇
- 律师合作协议书
- 双减背景下小学数学作业的创新设计五篇集合
- 光伏项目安全培训课件
- 物流专业个人能力展示
- 五年级上册小数除法竖式计算练习300题及答案
- 大学生职业规划数据分析师
- 技改方案范文
- 县人民医院关于职工工资与绩效等待遇的规定
- 农村自建房施工安全措施方案
- 护理产业与行业分析
- 征地拆迁安置区市政配套设施工程测绘服务公开选取测绘招投标书范本
- 《我的祖国》课件
评论
0/150
提交评论