湖北省随州市广水市西北协作区中考联考数学试卷及答案解析_第1页
湖北省随州市广水市西北协作区中考联考数学试卷及答案解析_第2页
湖北省随州市广水市西北协作区中考联考数学试卷及答案解析_第3页
湖北省随州市广水市西北协作区中考联考数学试卷及答案解析_第4页
湖北省随州市广水市西北协作区中考联考数学试卷及答案解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省随州市广水市西北协作区中考联考数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃ B.零下3℃ C.零上7℃ D.零下7℃2.如图所示,在平面直角坐标系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C;把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,则旋转第2017次后,得到的等腰直角三角形的直角顶点P2018的坐标为()A.(4030,1) B.(4029,﹣1)C.(4033,1) D.(4035,﹣1)3.若正多边形的一个内角是150°,则该正多边形的边数是()A.6B.12C.16D.184.△ABC在网络中的位置如图所示,则cos∠ACB的值为()A. B. C. D.5.如图所示的四张扑克牌背面完全相同,洗匀后背面朝上,则从中任意翻开一张,牌面数字是3的倍数的概率为()A. B. C. D.6.关于x的一元二次方程x2-2x-(m-1)=0有两个不相等的实数根,则实数m的取值范围是()A.且 B. C.且 D.7.下列各曲线中表示y是x的函数的是()A. B. C. D.8.-10-4的结果是()A.-7B.7C.-14D.139.已知抛物线y=ax2+bx+c与x轴交于(x1,0)、(x2,0)两点,且0<x1<1,1<x2<2与y轴交于(0,-2),下列结论:①2a+b>1;②a+b<2;③3a+b>0;④a<-1,其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个10.下列因式分解正确的是()A.x2+9=(x+3)2 B.a2+2a+4=(a+2)2C.a3-4a2=a2(a-4) D.1-4x2=(1+4x)(1-4x)11.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm12.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=6,则CP的长为()A.3.5 B.3 C.4 D.4.5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,已知C(1,),△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,则点F的坐标为_____.14.已知∠=32°,则∠的余角是_____°.15.在实数﹣2、0、﹣1、2、中,最小的是_______.16.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:∠ACB是△ABC的一个内角.求作:∠APB=∠ACB.小明的做法如下:如图①作线段AB的垂直平分线m;②作线段BC的垂直平分线n,与直线m交于点O;③以点O为圆心,OA为半径作△ABC的外接圆;④在弧ACB上取一点P,连结AP,BP.所以∠APB=∠ACB.老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是_____;(2)∠APB=∠ACB的依据是_____.17.如图,中,,则__________.18.如图,直线a∥b,正方形ABCD的顶点A、B分别在直线a、b上.若∠2=73°,则∠1=.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知抛物线与轴交于两点(A点在B点的左边),与轴交于点.(1)如图1,若△ABC为直角三角形,求的值;(2)如图1,在(1)的条件下,点在抛物线上,点在抛物线的对称轴上,若以为边,以点、、、Q为顶点的四边形是平行四边形,求点的坐标;(3)如图2,过点作直线的平行线交抛物线于另一点,交轴于点,若﹕=1﹕1.求的值.20.(6分)小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在中,是边上的中线,若,求证:.如图②,已知矩形,如果在矩形外存在一点,使得,求证:.(可以直接用第(1)问的结论)在第(2)问的条件下,如果恰好是等边三角形,请求出此时矩形的两条邻边与的数量关系.21.(6分)现种植A、B、C三种树苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一种树苗,且每名工人每天可植A种树苗8棵;或植B种树苗6棵,或植C种树苗5棵.经过统计,在整个过程中,每棵树苗的种植成本如图所示.设种植A种树苗的工人为x名,种植B种树苗的工人为y名.求y与x之间的函数关系式;设种植的总成本为w元,①求w与x之间的函数关系式;②若种植的总成本为5600元,从植树工人中随机采访一名工人,求采访到种植C种树苗工人的概率.22.(8分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(I)如图①,若BC为⊙O的直径,求BD、CD的长;(II)如图②,若∠CAB=60°,求BD、BC的长.23.(8分)中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25请根据所给信息,解答下列问题:m=,n=;请补全频数分布直方图;若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?24.(10分)解不等式组:,并把解集在数轴上表示出来。25.(10分)如图,在平面直角坐标系中,四边形的顶点是坐标原点,点在第一象限,点在第四象限,点在轴的正半轴上,且.(1)求点和点的坐标;(2)点是线段上的一个动点(点不与点重合),以每秒个单位的速度由点向点运动,过点的直线与轴平行,直线交边或边于点,交边或边于点,设点.运动时间为,线段的长度为,已知时,直线恰好过点.①当时,求关于的函数关系式;②点出发时点也从点出发,以每秒个单位的速度向点运动,点停止时点也停止.设的面积为,求与的函数关系式;③直接写出②中的最大值是.26.(12分)某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?27.(12分)已知:如图,在梯形ABCD中,AD∥BC,AB=DC,E是对角线AC上一点,且AC·CE=AD·BC.(1)求证:∠DCA=∠EBC;(2)延长BE交AD于F,求证:AB2=AF·AD.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】试题分析:由题意知,“-”代表零下,因此-3℃表示气温为零下3℃.故选B.考点:负数的意义2、D【解析】

根据题意可以求得P1,点P2,点P3的坐标,从而可以发现其中的变化的规律,从而可以求得P2018的坐标,本题得以解决.【详解】解:由题意可得,

点P1(1,1),点P2(3,-1),点P3(5,1),

∴P2018的横坐标为:2×2018-1=4035,纵坐标为:-1,

即P2018的坐标为(4035,-1),

故选:D.【点睛】本题考查了点的坐标变化规律,解答本题的关键是发现各点的变化规律,求出相应的点的坐标.3、B【解析】设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12,故选B.4、B【解析】作AD⊥BC的延长线于点D,如图所示:在Rt△ADC中,BD=AD,则AB=BD.cos∠ACB=,故选B.5、C【解析】

根据题意确定所有情况的数目,再确定符合条件的数目,根据概率的计算公式即可.【详解】解:由题意可知,共有4种情况,其中是3的倍数的有6和9,∴是3的倍数的概率,故答案为:C.【点睛】本题考查了概率的计算,解题的关键是熟知概率的计算公式.6、A【解析】

根据一元二次方程的系数结合根的判别式△>1,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【详解】∵关于x的一元二次方程x2﹣2x﹣(m﹣1)=1有两个不相等的实数根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m>1,∴m>1.故选B.【点睛】本题考查了根的判别式,牢记“当△>1时,方程有两个不相等的实数根”是解题的关键.7、D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.8、C【解析】解:-10-4=-1.故选C.9、A【解析】

如图,且图像与y轴交于点,可知该抛物线的开口向下,即,①当时,故①错误.②由图像可知,当时,∴∴故②错误.③∵∴,又∵,∴,∴,∴,故③错误;④∵,,又∵,∴.故④正确.故答案选A.【点睛】本题考查二次函数系数符号的确定由抛物线的开口方向、对称轴和抛物线与坐标轴的交点确定.10、C【解析】

试题分析:A、B无法进行因式分解;C正确;D、原式=(1+2x)(1-2x)故选C,考点:因式分解【详解】请在此输入详解!11、A【解析】试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的长RN+NQ=3+2.5=3.5(cm).故选A.考点:轴对称图形的性质12、B【解析】

解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD平分∠ABC,∴∠ABD=∠ABC=10°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P点是BD的中点,∴CP=BD=1.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、(,)【解析】

根据相似三角形的性质求出相似比,根据位似变换的性质计算即可.【详解】解:∵△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,则△DEF的边长是△ABC边长的倍,∴点F的坐标为(1×,×),即(,),故答案为:(,).【点睛】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.14、58°【解析】

根据余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角可得答案.【详解】解:∠α的余角是:90°-32°=58°.故答案为58°.【点睛】本题考查余角,解题关键是掌握互为余角的两个角的和为90度.15、﹣1.【解析】

解:在实数﹣1、0、﹣1、1、中,最小的是﹣1,故答案为﹣1.【点睛】本题考查实数大小比较.16、①线段垂直平分线上的点与这条线段两个端点的距离相等;②等量代换同弧所对的圆周角相等【解析】

(1)根据线段的垂直平分线的性质定理以及等量代换即可得出结论.

(2)根据同弧所对的圆周角相等即可得出结论.【详解】(1)如图2中,∵MN垂直平分AB,EF垂直平分BC,∴OA=OB,OB=OC(线段垂直平分线上的点与这条线段两个端点的距离相等),∴OA=OB=OC(等量代换)故答案是:(2)∵,∴∠APB=∠ACB(同弧所对的圆周角相等).故答案是:(1)线段垂直平分线上的点与这条线段两个端点的距离相等和等量代换;(2)同弧所对的圆周角相等.【点睛】考查作图-复杂作图、线段的垂直平分线的性质、三角形的外心等知识,解题的关键是熟练掌握三角形外心的性质.17、17【解析】∵Rt△ABC中,∠C=90°,∴tanA=,∵,∴AC=8,∴AB==17,故答案为17.18、107°【解析】

过C作d∥a,得到a∥b∥d,构造内错角,根据两直线平行,内错角相等,及平角的定义,即可得到∠1的度数.【详解】过C作d∥a,∴a∥b,∴a∥b∥d,∵四边形ABCD是正方形,∴∠DCB=90°,∵∠2=73°,∴∠6=90°-∠2=17°,∵b∥d,∴∠3=∠6=17°,∴∠4=90°-∠3=73°,∴∠5=180°-∠4=107°,∵a∥d,∴∠1=∠5=107°,故答案为107°.【点睛】本题考查了平行线的性质以及正方形性质的运用,解题时注意:两直线平行,内错角相等.解决问题的关键是作辅助线构造内错角.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1);(2)和;(3)【解析】

(1)设,,再根据根与系数的关系得到,根据勾股定理得到:、,根据列出方程,解方程即可;(2)求出A、B坐标,设出点Q坐标,利用平行四边形的性质,分类讨论点P坐标,利用全等的性质得出P点的横坐标后,分别代入抛物线解析式,求出P点坐标;(3)过点作DH⊥轴于点,由::,可得::.设,可得点坐标为,可得.设点坐标为.可证△∽△,利用相似性质列出方程整理可得到①,将代入抛物线上,可得②,联立①②解方程组,即可解答.【详解】解:设,,则是方程的两根,∴.∵已知抛物线与轴交于点.∴在△中:,在△中:,∵△为直角三角形,由题意可知∠°,∴,即,∴,∴,解得:,又,∴.由可知:,令则,∴,∴.①以为边,以点、、、Q为顶点的四边形是四边形时,设抛物线的对称轴为,l与交于点,过点作⊥l,垂足为点,即∠°∠.∵四边形为平行四边形,∴∥,又l∥轴,∴∠∠=∠,∴△≌△,∴,∴点的横坐标为,∴即点坐标为.②当以为边,以点、、、Q为顶点的四边形是四边形时,设抛物线的对称轴为,l与交于点,过点作⊥l,垂足为点,即∠°∠.∵四边形为平行四边形,∴∥,又l∥轴,∴∠∠=∠,∴△≌△,∴,∴点的横坐标为,∴即点坐标为∴符合条件的点坐标为和.过点作DH⊥轴于点,∵::,∴::.设,则点坐标为,∴.∵点在抛物线上,∴点坐标为,由(1)知,∴,∵∥,∴△∽△,∴,∴,即①,又在抛物线上,∴②,将②代入①得:,解得(舍去),把代入②得:.【点睛】本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.20、(1)详见解析;(2)详见解析;(3)【解析】

(1)利用等腰三角形的性质和三角形内角和即可得出结论;

(2)先判断出OE=AC,即可得出OE=BD,即可得出结论;

(3)先判断出△ABE是底角是30°的等腰三角形,即可构造直角三角形即可得出结论.【详解】(1)∵AD=BD,

∴∠B=∠BAD,

∵AD=CD,

∴∠C=∠CAD,

在△ABC中,∠B+∠C+∠BAC=180°,

∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°

∴∠B+∠C=90°,

∴∠BAC=90°,(2)如图②,连接与,交点为,连接四边形是矩形(3)如图3,过点做于点四边形是矩形,是等边三角形,由(2)知,在中,,【点睛】此题是四边形综合题,主要考查了矩形是性质,直角三角形的性质和判定,含30°角的直角三角形的性质,三角形的内角和公式,解(1)的关键是判断出∠B=∠BAD,解(2)的关键是判断出OE=AC,解(3)的关键是判断出△ABE是底角为30°的等腰三角形,进而构造直角三角形.21、(1);(2)①;②【解析】

(1)先求出种植C种树苗的人数,根据现种植A、B、C三种树苗一共480棵,可以列出等量关系,解出y与x之间的关系;(2)①分别求出种植A,B,C三种树苗的成本,然后相加即可;②求出种植C种树苗工人的人数,然后用种植C种树苗工人的人数÷总人数即可求出概率.【详解】解:(1)设种植A种树苗的工人为x名,种植B种树苗的工人为y名,则种植C种树苗的人数为(80-x-y)人,根据题意,得:8x+6y+5(80-x-y)=480,整理,得:y=-3x+80;(2)①w=15×8x+12×6y+8×5(80-x-y)=80x+32y+3200,把y=-3x+80代入,得:w=-16x+5760,②种植的总成本为5600元时,w=-16x+5760=5600,解得x=10,y=-3×10+80=50,即种植A种树苗的工人为10名,种植B种树苗的工人为50名,种植B种树苗的工人为:80-10-50=20名.采访到种植C种树苗工人的概率为:=.【点睛】本题主要考查了一次函数的实际问题,以及概率的求法,能够将实际问题转化成数学模型是解答此题的关键.22、(1)BD=CD=5;(2)BD=5,BC=5.【解析】

(1)利用圆周角定理可以判定△DCB是等腰直角三角形,利用勾股定理即可解决问题;(2)如图②,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5,再根据垂径定理求出BE即可解决问题.【详解】(1)∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵AD平分∠CAB,∴,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴BD=CD=5,(2)如图②,连接OB,OD,OC,∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5,∵AD平分∠CAB,∴,∴OD⊥BC,设垂足为E,∴BE=EC=OB•sin60°=,∴BC=5.【点睛】本题考查圆周角定理,垂径定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.23、(1)70,0.2(2)70(3)750【解析】

(1)根据题意和统计表中的数据可以求得m、n的值;(2)根据(1)中求得的m的值,从而可以将条形统计图补充完整;(3)根据统计表中的数据可以估计该校参加这次比赛的3000名学生中成绩“优”等约有多少人.【详解】解:(1)由题意可得,m=200×0.35=70,n=40÷200=0.2,故答案为70,0.2;(2)由(1)知,m=70,补全的频数分布直方图,如下图所示;(3)由题意可得,该校参加这次比赛的3000名学生中成绩“优”等约有:3000×0.25=750(人),答:该校参加这次比赛的3000名学生中成绩“优”等约有750人.【点睛】本题考查频数分布直方图、频数分布表、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24、,解集在数轴上表示见解析【解析】试题分析:先解不等式组中的每一个不等式,得到不等式组的解集,再

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论