版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020-2021学年朝阳市建平县七年级上学期期末数学试卷
一、选择题(本大题共10小题,共30.0分)
1.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即
1.4960亿千米.用科学记数法表示1个天文单位应是()
A.1.4960X1。7千米B.14.960X1。7千米
C.1.4960x千米D,0.14960x千米
2.如图是由六个棱长为1的正方体组成的一个几何体,其主视图的面积是()
A.3
B.4
C.5
D.6
3.下列变形正确的是()
A.如果2%-3=7,那么2%=7+3
B.如果3%—2=%+1,那么3%—x=1—2
C.如果一2%=5,那么久=5+2
1
D.如果—=1,那么%=3
4.已知是圆锥(如图1)底面的直径,P是圆锥的顶点,此圆锥的侧面展开图如图2所示.一只蚂
蚁从4点出发,沿着圆锥侧面经过PB上一点,最后回到4点.若此蚂蚁所走的路线最短,那么M,
N,S,T(MN,S,T均在PB上)四个点中,它最有可能经过的点是()
A.M
5.下列各组中的两项,属于同类项的是()
A.a2与aB.-3ab与2abC.a2b与ab?D.a与b
6.如图,先将正方形纸片对折,折痕为EF,再把点C折叠到EF上,折痕为ON,
点C在EF上的对应点为M,则下列结论中正确的个数有()
(1)2M=AB;(2)ZMCE=15°;(3)AAMD是等边三角形;(4)CN=NE
A.1个
B.2个
C.3个
D.4个
7.有理数a,b在数轴上的表示如图所示,则下列结论中:@ab<0;@a+b<0;@a-b<0;
@a<\b\;(5)—a>—b,正确的有()
―b---------0a)
A.2个B.3个C.4个D.5个
8.一个多边形从一个顶点出发共引3条对角线,那么这个多边形对角线的总数为()
A.5B.37C.8D.9
9.如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形分布图(两图都不完整),
则下列结论中错误的是()
乘车步行骑车
A.该班总人数为50人B.骑车人数占总人数的20%
C.步行人数为30人D.乘车人数是骑车人数的2.5倍
10.某商场实行8折优惠销售,现售价为x元的商品的原价是
A.0.2xB,0.8xC.1.25xD.5X
二、填空题(本大题共6小题,共18.0分)
11.2018的相反数是.
12.已知Na=52。12',贝叱必的补角为.
13.当x取时,代数式2(%+3)的值比3(1—久)的值大8;
14.一列方程如下排列:
:+言=1的解是%=2;
4Z
£+?=1的解是%=3;
62
£+?=1的解是%=4;
oZ
根据观察得到的规律,写出其中解是尤=2020的方程:.
15.如果线段aB=6nn,BC=3cm,且4、B、C在同一直线上,那么4、C两点间的距离是
厘米.
16.观察规律并填空
27
'22八32233233
«1、.1、〃1/p>
I227V32JI42^152J22334455255,
(1—京)(1—京)(1—a)(1—专—6=.(用含"的代数式表示*n是正整数,且nN2)
三、解答题(本大题共9小题,共72.0分)
17.计算:
(1)&+»勺*(-12)
(2)(1+}x(_|)2+]+(—Ip
18.王老师给同学们出了一道化简的题目:2(2%2y+x)—302y—2久),小亮同学的做法如下:
2(2比2y+%)-3(%2y-2x)=4x2y+x-3x2y-2x=x2y-%.请你指出小亮的做法正确吗?
如果不正确,请指出错在哪?并将正确的化简过程写下来.
19.15—(7—5%)=2%+(5—3%)
20.如图,已知直线1和直线外三点4B、C,按下列要求画图:
(1)画射线4B;(2)连接BC;(3)延长BC至D,使得CD=BC;(4)在直线/上确定点E,使得2E+CE最
小.
A*
21.为调查我市民上班时最常用的交通工具的情况随机抽取了部分市民进行调查,要求被调查者从
“4自行车,B:电动车,C:公交车,D-.家庭汽车;E.其他”中选择最常用的一项.将所有
调查结果整理后绘制成如下不完整计图,请结合统计图回答下列问题:
⑴本次一共调查了名市民;扇形统计图中B项对应的圆心角是_____度;
(2)补全条形统计图;
(3)若甲、乙两人上班时从4、B、C、。四种交通工具中随或画树状图的方法,求出甲、乙两人恰好
选择同一种交通工具上班的概率.
22.声速y(米/秒)与气温xdC)之间的关系如下表所示:
气温比(°C)05101520
音速y(米/秒)331334337340343
从表中可知音速y随温度x的升高而升高,在气温为20。(:的一天召开运动会,某人看到发令枪的
烟0.2秒后,听到了枪声,请问此人距发令地点约有多少米?
23.已知a、b互为相反数,c、d互为倒数,且=3,求2a-47n2+26-3产。5的值.
24.司机在驾驶汽车时,发现紧急情况到踩下刹车需要一段时间,这段时间叫反应时间.之后还会
继续行驶一段距离.我们把司机从发现紧急情况到汽车停所行驶的这段距离叫“刹车距离”(如
图).
发猊情况开始剁车汽华停止
已知汽车的刹车距离s(单位:米)与车速穴单位:米/秒)之间有如下关:s=tu+k〃,其中t为司机
的反应时间(单位:秒),k为制动系数.某机构为测试司机饮酒后刹车距离的变化,对某种型号
的汽车进行了“醉汉”驾车测试,已知该型号汽车的制动系数k=0.1,并测得志愿者在未饮酒
时的反应时间t=0.5秒
(1)若志愿者未饮酒,且车速为10米/秒,则该汽车的刹车距离为米.
(2)当志愿者在喝下一瓶啤酒半小时后,以15米/秒的速度驾车行驶,测得刹车距离为52.5米,此时
该志愿者的反应时间是秒.
(3)假设该志愿者当初是以8米/秒的车速行驶,则刹车距离将比未饮酒时增加多少?
(4)假如你以后驾驶该型号的汽车以10米/秒至15米/秒的速度行驶,且与前方车辆的车距保持在45
米至55米之间.若发现前方车辆突然停止,为防止“追尾”,你的反应时间应不超过多少秒?
25.已知:如图,KBOC=2乙AOB,。。平分NAOC,^BOD=20°,求NAOB的度数.
OA
参考答案及解析
1.答案:C
解析:试题分析:科学记数法的表示形式为ax10"的形式,其中71为整数.确定九的
值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝
对值>1时,n是正数;当原数的绝对值<1时,n是负数.
将1.4960亿千米用科学记数法表示为:1.4960X1。8千米.
故选:C.
2.答案:B
解析:解:此几何体的主视图如图所示:|~~|
••・小正方体的棱长为1,|
・・・主视图的面积为1x1x4=4,
故选:B.
首先根据题意画出主视图,再计算出一个小正方体一个面的面积,再乘以4即可.
此题主要考查了几何体的主视图,关键是掌握主视图是从几何体的正面看所得到的视图.
3.答案:A
解析:解:4、正确.
B、错误.如果3尤一2=久+1,那么3x—久=1+2.
C、错误.如果—2x=5,那么x=-
。、错误.如果一=那么无=一3.
根据等式的性质一一判断即可.
本题考查等式的性质,记住:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两
边乘同一个数或除以一个不为零的数,结果仍得等式.
4.答案:B
解析:解:如图所示:根据圆锥侧面展开图,此蚂蚁所走的路线最短,那么M,N,S,T(M,N,S,T均
在PB上)四个点中,它最有可能经过的点是N,
故选B.
根据圆锥画出侧面展开图,根据两点之间线段最短可得它最有可能经过的点是M
此题主要考查了线段的性质,关键是掌握两点之间线段最短.
5.答案:B
解析:解:4、a?与&中所含字母的指数不同,不是同类项,故此选项不符合题意;
B、-3帅与2ab中所含字母相同,相同字母的指数也相同,是同类项,故此选项符合题意;
C、a2b与帅2中所含字母相同,相同字母的指数不相同,不是同类项,故此选项不符合题意;
。、a与b中所含字母不同,不是同类项,故此选项不符合题意.
故选:B.
根据同类项的定义对四个选项进行逐一分析即可.
本题考查的是同类项的定义,解答此类题目时要注意判断同类项的依据:
①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;
②同类项与系数的大小无关;
③同类项与它们所含的字母顺序无关;
④所有常数项都是同类项.
6.答案:C
解析:解:•••四边形4BCD是正方形,
AB=CD,
••・先将正方形纸片对折,折痕为EF,
:.AF=DF,EF1AD,
•••AM=DM,
由折叠的性质得,DM=CD,
AM=AB,故(1)正确;
•••AM=DM=AD,
.•.△AMD的等边三角形,故(3)正确;
・•・/.ADM=60°,
・•・乙CDM=30°,
i
•••4DCM=-(180°-30°)=75°,
/.MCE=15°,故(2)正确;
连接MN,
则MN=CN,
•••MN>EN,
CN>EN,故(4)错误;
故选:C.
根据正方形的性质得到AB=CD,由折叠的性质得到4尸=DF,EF1AD,求得AM=DM,由折叠
的性质得到DM=CD,于是得到AM=AB,故(1)正确;推出△AMD的等边三角形,故(3)正确;求
得NMCE=15。,故(2)正确;连接MN,得至【JCN>EN,故(4)错误.
本题主要考查的是翻折的性质、线段垂直平分线的性质、等边三角形的性质和判定、等腰三角形的
性质,证得三角形4。”是一个等边三角形是解题的关键.
7.答案:B
解析:
本题考查了数轴与绝对值,有理数的乘法及有理数的加减法.数轴上右边表示的数总大于左边表示的
数.原点左边的数为负数,原点右边的数为正数.
从图中可以看出b<0,a>0,\b\>\a\,可用取特殊值的方法逐一验证.
解:根据数轴上a,b两点的位置可设a=1,b=-3,则:
@ab=1X(-3)=—3<0,正确;
(2)ct+6=1—3—2<0,正确;
③a—6=1+3=4>0,故③错误;
@a<\b\,1<|-3|,正确;
⑤—a>—b>一1<3,故⑤)错误.
故正确的有①②④,共三个.
故选B.
8.答案:D
解析:解:,•・一个多边形从一个顶点出发共引3条对角线,
n—3=3,
n=6,
那么这个多边形对角线的总数为:等=9.
故选:D.
根据对角线的概念,知一个多边形从一个顶点出发有0-3)条对角线,求出n的值,再根据多边形
对角线的总数为硬沿,即可解答.
本题考查了多边形的对角线,解决本题的关键是熟记对角线的有关概念.
9.答案:C
解析:解:由条形图中可知乘车的人有25人,骑车的人有10人,
在扇形图中分析可知,乘车的占总数的50%,所以总数有25+50%=50(人),所以骑车人数占总人
数的20%;
步行人数为30%X50=15(人);乘车人数是骑车人数的2.5倍.
故选:C.
由条形图与扇形图的意义,分析可得乘车的人有25人,占总数的50%;骑车的人有10人,占总人数
的20%;作比可得答案.
本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的
扇形圆心角的度数与360。比.
10.答案:c
解析:解:根据题意,得:原价=x+80%=1.25^0
故选C„
11.答案:-2018
解析:解:2018的相反数是:—2018.
故答案为:-2018.
直接利用相反数的定义得出答案.
此题主要考查了相反数,正确把握相反数定义是解题关键.
12.答案:127。48,
解析:解:•.•”=52。12',
z_a的补角=180°-52°12,=127°48,,
故答案为:127°48'.
根据补角的定义即可得到结论.
本题考查补角的定义:如果两个角的和为180。,那么这两个角互为补角.
13.答案:1
解析:解:根据题意得:2(%+3)—3(1—x)=8,
去括号得:2%+6—3+3x=8,
移项合并得:5%=5,
解得:x=1,
故答案为:1
根据题意列出方程,求出方程的解即可得到久的值.
此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.
x-2019y
14•答案:嬴+----=1
2
解析:解:
一列方程如下排列:
升言=1的解是无=2;
:+q=1的解是%=3;
62
g+?=1的解是X=4;
oZ
即该列方程如下排列:
丘+^=1的解是%=2;
言+?=1的解是%=3;
氏+詈=1的解是x=4;
所以,W有+三”=1的解是》=2020;
ZXZUzUz
即按此规律,解是“2。2。的方程为荒+匕罗=1,
X-2019
故答案为:盘+=1.
2
先根据已知方程得出规律,再根据得出的规律得出即可.
本题考查了数式规律,一元一次方程的解,能根据题意得出规律是解此题的关键.
15.答案:3或9
解析:解:①当B在A、C之间时,AC=AB+BC=9cm;
②当C在4、B之间时,AC=AB-BC=3cm;
故答案为3或9.
分两种情况求:当B在4c之间时,AC=AB+BC=9cm;②当C在4、B之间时,AC=AB-BC=3c.
本题考查两点间的距离;熟练掌握线段上点的特点,准确确定三点的位置是解题的关键.
16.答案:?
2n
解析:解:(1一,)(1一£)(1_*)(1(1一幼
_1324354n+1
―2233445n
n+1
=育
故答案为:啜.
2n
由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩
下两端的(1—}和(1+,)相乘得出结果.
此题考查算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.
17.答案:解:(1)(,+,-Jx(-12)
=ix(-12)+ix(-12)-ix(-12)
=(-2)+(-6)+1
=-7;
(2)(l+i)X(-|)2^j+(-l)3
=-x-x3+(-1)
=2+(-1)
=1.
解析:(1)根据乘法分配律可以解答本题;
(2)根据有理数的加法、乘除法可以解答本题.
本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.
18.答案:解:不正确,去括号时出错
2(2%2y+%)—3(%2y—2x)
=4%2y+2x—3%2y+6%
=x2y+8x
解析:根据整式的运算法则即可求出答案.
本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.
19.答案:解:去括号得:15-7+5%=2%+5-3%,
移项得:5%-2%+3%=5—15+7,
合并同类项得:6%=-3,
解得:%=-i.
解析:首先去括号,然后移项、合并同类项、系数化成1,即可求得方程的解.
本题考查了一元一次方程的解法,正确理解解题的步骤是关键.
(2)如图,线段BC即为所求;
(3)如图,线段CD即为所求;
(4)如图所示,点E即为所求.
解析:(1)根据射线的定义作图即可得;
(2)根据线段的定义作图可得;
(3)根据延长线的定义作图可得;
(4)根据两点之间线段最短作图即可得.
本题主要考查作图,解题的关键是熟练掌握射线、线段及两点间线段最短基本知识.
21.答案:200054
解析:解:⑴本次调查的总人数为500+25%=2000人,扇形统计图中,B项对应的扇形圆心角是
360°x—=54°
2000
故答案为:2000,54;
(2)选择公交车人数为800人,补全条形统计图如图所示
(3)列表如下:
ABcD
AGM)(")(CM)(。⑷
B(4B)(B,B)(C,B)(D,B)
C(4G(B,C)(c,c)(D,C)
D(4D)(B,D)CD)(D,D)
由表可知共有16种等可能结果,其中甲、乙两人恰好选择同一种交通工具上班的结果有4种,
所以甲、乙两人恰好选择同一种交通工具上班的概率为白=7.
164
(1)根据。组的人数以及百分比,即可得到被调查的人数,再根据扇形圆心角的度数=部分占总体的
百分比x360。进行计算即可;
(2)由各选项人数和等于总人数求出C选项的人数,从而补全图形;
(3)根据甲、乙两人上班时从4B、C、D四种交通工具中随机选择一种画树状图或列表,即可运用
概率公式得到甲、乙两人恰好选择同一种交通工具上班的概率.
此题考查了条形统计图、扇形统计图和概率公式的运用,解题的关键是仔细观察统计图并从中整理
出进一步解题的有关信息,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分
占总体的百分比大小.
22.答案:解:根据题意知气温为20久时音速为343米/秒,
则此人距发令地点约有343X0,2=68.6米.
解析:根据表中数据可列出音速与时间的关系式,进而求出答案.
本题主要考查函数的表示方法,解题的关键是根据表格得出20K时的音速.
23.答案:解:•.•4、6互为相反数,
a+b=0①;
又•••,、d互为倒数,
•t•cd=1②;
•••\m\=3,
•t.m2=\m\2=9③,
••12a—4m2+2/?—(cd)2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 表壳市场发展前景分析及供需格局研究预测报告
- 电缆细分市场深度研究报告
- 制药剂专用离心机产业链招商引资的调研报告
- 花式滑水板市场分析及投资价值研究报告
- 2024年甘肃西北师范大学诚聘海内外高层次人才补充笔试模拟试题及答案解析
- 2024年金华磐安县卫健局下属事业单位公开招聘工作人员3人(事业编制)笔试模拟试题及答案解析
- 海洋工程招标合同三篇
- 秋季外语教学资料及培训计划
- 行业安全事件处理的标准化建设计划
- 学校图书馆利用策略计划
- 2024年车路云一体化系统建设与应用指南报告
- 2025届高考语文复习:鉴赏诗歌的语言(炼字、炼句、语言风格)+课件
- 污水处理厂出水水质超标应急演练方案
- 2024年企业收购委托代理协议文件版
- 统编版(2024)七年级上册道德与法治第八课《认识生命》教学设计
- 广东省2023年中考英语真题(含答案)
- 沪教牛津版英语2024七年级上册全册知识清单(记忆版)
- 南京师范大学苏州实验学校(南师苏校)小升初数学试题文本空白卷附详细答案
- 小儿重症肺炎课件
- 啤酒终端销售培训课件
- 《图形创意设计》PPT课件(完整版)
评论
0/150
提交评论