2025届湖南平江二中数学高一下期末统考模拟试题含解析_第1页
2025届湖南平江二中数学高一下期末统考模拟试题含解析_第2页
2025届湖南平江二中数学高一下期末统考模拟试题含解析_第3页
2025届湖南平江二中数学高一下期末统考模拟试题含解析_第4页
2025届湖南平江二中数学高一下期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南平江二中数学高一下期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点、、在圆上运动,且,若点的坐标为,的最大值为()A. B. C. D.2.已知某地区中小学生人数和近视情况分别如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A., B., C., D.,3.经过平面α外两点,作与α平行的平面,则这样的平面可以作()A.1个或2个B.0个或1个C.1个D.0个4.已知,若,则的值是().A.-1 B.1 C.2 D.-25.已知函数满足下列条件:①定义域为;②当时;③.若关于x的方程恰有3个实数解,则实数k的取值范围是A. B. C. D.6.空间直角坐标系中,点关于轴对称的点的坐标是()A. B.C. D.7.已知椭圆C:的左右焦点为F1,F2离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为()A. B. C. D.8.在ABC中,.则的取值范围是()A.(0,] B.[,) C.(0,] D.[,)9.在△中,点是上一点,且,是中点,与交点为,又,则的值为()A. B. C. D.10.在△ABC中,内角A,B,C的对边分别是a,b,c,若cosB=,=2,且S△ABC=,则b的值为()A.4 B.3 C.2 D.1二、填空题:本大题共6小题,每小题5分,共30分。11.数列通项公式,前项和为,则________.12.已知向量,则的单位向量的坐标为_______.13.长时间的低头,对人的身体如颈椎、眼睛等会造成定的损害,为了了解某群体中“低头族”的比例,现从该群体包含老、中、青三个年龄段的人中采用分层抽样的方法抽取人进行调查,已知这人里老、中、青三个年龄段的分配比例如图所示,则这个群体里青年人人数为_____14.设,为单位向量,其中,,且在方向上的射影数量为2,则与的夹角是___.15.若直线与圆相交于,两点,且(其中为原点),则的值为________.16.方程的解集是___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.解关于x的不等式18.已知.(I)若函数有三个零点,求实数的值;(II)若对任意,均有恒成立,求实数的取值范围.19.已知函数f(x)=asin(x)(a>0)在同一半周期内的图象过点O,P,Q,其中O为坐标原点,P为函数f(x)的最高点,Q为函数f(x)的图象与x轴的正半轴的交点,△OPQ为等腰直角三角形.(1)求a的值;(2)将△OPQ绕原点O按逆时针方向旋转角α(0<α),得到△OP′Q′,若点P′恰好落在曲线y(x>0)上(如图所示),试判断点Q′是否也落在曲线y(x>0),并说明理由.20.在中,分别为内角的对边,且(1)求的大小:(2)若,求的面积.21.已知函数的图象向左平移个单位长度后与函数图象重合.(1)求和的值;(2)若函数,求函数的单调递减区间及图象的对称轴方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由题意可知为圆的一条直径,由平面向量加法的平行四边形法则可得(为坐标原点),然后利用平面向量模的三角不等式以及圆的几何性质可得出的最大值.【详解】如下图所示:,为圆的一条直径,由平面向量加法的平行四边形法则可得(为坐标原点),由平面向量模的三角不等式可得,当且仅当点的坐标为时,等号成立,因此,的最大值为.故选:C.【点睛】本题考查向量模的最值问题,涉及平面向量模的三角不等式以及圆的几何性质的应用,考查数形结合思想的应用,属于中等题.2、B【解析】

试题分析:由题意知,样本容量为,其中高中生人数为,高中生的近视人数为,故选B.【考点定位】本题考查分层抽样与统计图,属于中等题.3、B【解析】若平面α外的两点所确定的直线与平面α平行,则过该直线与平面α平行的平面有且只有一个;若平面α外的两点所确定的直线与平面α相交,则过该直线的平面与平面α平行的平面不存在;故选B.4、C【解析】

先求出的坐标,再利用向量平行的坐标表示求出c的值.【详解】由题得,因为,所以2(c-2)-2×0=0,所以c=2.故选C【点睛】本题主要考查向量的坐标计算和向量共线的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题.5、D【解析】

分析:先根据条件确定函数图像,再根据过定点(1,0)的直线与图像关系确定实数k的取值范围.详解:因为,当时;所以可作函数在上图像,如图,而直线过定点A(1,0),根据图像可得恰有3个实数解时实数k的取值范围为,选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.6、A【解析】

关于轴对称,纵坐标不变,横坐标、竖坐标变为相反数.【详解】关于轴对称的两点的纵坐标相同,横坐标、竖坐标均互为相反数.所以点关于轴对称的点的坐标是.故选:A.【点睛】本题考查空间平面直角坐标系,考查关于坐标轴、坐标平面对称的问题.属于基础题.7、A【解析】

若△AF1B的周长为4,由椭圆的定义可知,,,,,所以方程为,故选A.考点:椭圆方程及性质8、C【解析】

试题分析:由于,根据正弦定理可知,故.又,则的范围为.故本题正确答案为C.考点:三角形中正余弦定理的运用.9、D【解析】试题分析:因为三点共线,所以可设,又,所以,,将它们代入,即有,由于不共线,从而有,解得,故选择D.考点:向量的基本运算及向量共线基本定理.10、C【解析】试题分析:根据正弦定理可得,.在中,,.,,.,.故C正确.考点:1正弦定理;2余弦定理.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

利用裂项求和法求出,取极限进而即可求解.【详解】,故,所以,故答案为:1【点睛】本题考查了裂项求和法以及求极限值,属于基础题.12、.【解析】

由结论“与方向相同的单位向量为”可求出的坐标.【详解】,所以,,故答案为.【点睛】本题考查单位向量坐标的计算,考查共线向量的坐标运算,充分利用共线单位向量的结论可简化计算,考查运算求解能力,属于基础题.13、【解析】

根据饼状图得到青年人的分配比例;利用总数乘以比例即可得到青年人的人数.【详解】由饼状图可知青年人的分配比例为:这个群体里青年人的人数为:人本题正确结果:【点睛】本题考查分层抽样知识的应用,属于基础题.14、【解析】

利用在方向上的射影数量为2可得:,即可整理得:,问题得解.【详解】因为在方向上的射影数量为2,所以,整理得:又,为单位向量,所以.设与的夹角,则所以与的夹角是【点睛】本题主要考查了向量射影的概念及方程思想,还考查了平面向量夹角公式应用,考查转化能力及计算能力,属于中档题.15、【解析】

首先根据题意画出图形,再根据求出直线的倾斜角,求斜率即可.【详解】如图所示直线与圆恒过定点,不妨设,因为,所以,两种情况讨论,可得,.所以斜率.故答案为:【点睛】本题主要考查直线与圆的位置关系,同时考查了数形结合的思想,属于简单题.16、或【解析】

方程的根等价于或,分别求两个三角方程的根可得答案.【详解】方程或,所以或,所以或.故答案为:或.【点睛】本题考查三角方程的求解,求解时可利用单位圆中的三角函数线,注意终边相同角的表示,考查运算求解能力和数形结合思想的运用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、见解析.【解析】试题分析:(1)讨论的取值,分为,两种情形,求出对应不等式的解集即可.试题解析:当a=0时,原不等式化为x+10,解得;当时,原不等式化为,解得;综上所述,当a=0时,不等式的解集为,当时,不等式的解集为.点睛:本题考查了含有字母系数的不等式的解法与应用问题,元二次不等式的核心还是求一元二次方程的根,然后在结合图象判定其区间解题时应用分类讨论的思想,是中档题目;常见的讨论形式有:1、对二项式系数进行讨论;2、相对应的方程是否有根进行讨论;3、对应根的大小进行讨论.18、(I)或;(II).【解析】

(I)令,将有三个零点问题,转化为有三个不同的解的解决.画出和的图像,结合图像以及二次函数的判别式分类讨论,由此求得的值.(II)令,将恒成立不等式等价转化为恒成立,通过对分类讨论,求得的最大值,由此求得的取值范围.【详解】(I)由题意等价于有三个不同的解由,可得其函数图象如图所示:联立方程:,由可得结合图象可知.同理,由可得,因为,结合图象可知,综上可得:或.(Ⅱ)设,原不就价于,两边同乘得:,设,原题等价于的最大值.(1)当时,,易得,(2),,易得,所以的最大值为16,即,故.【点睛】本小题主要考查根据函数零点个数求参数,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,考查不等式恒成立问题的求解策略,考查分类讨论的数学思想,属于难题.19、(1)2;(2)见解析.【解析】

(1)由已知利用周期公式可求最小正周期T=8,由题意可求Q坐标为(1,0).P坐标为(2,a),结合△OPQ为等腰直角三角形,即可得解a的值.(2)由(Ⅰ)知,|OP|=2,|OQ|=1,可求点P′,Q′的坐标,由点P′在曲线y(x>0)上,利用倍角公式,诱导公式可求cos2,又结合0<α,可求sin2α的值,由于1cosα•1sinα=8sin2α=23,即可证明点Q′不落在曲线y(x>0)上.【详解】(Ⅰ)因为函数f(x)=asin(x)(a>0)的最小正周期T8,所以函数f(x)的半周期为1,所以|OQ|=1.即有Q坐标为(1,0).又因为P为函数f(x)图象的最高点,所以点P坐标为(2,a),又因为△OPQ为等腰直角三角形,所以a2.(Ⅱ)点Q′不落在曲线y(x>0)上.理由如下:由(Ⅰ)知,|OP|=2,|OQ|=1,所以点P′,Q′的坐标分别为(2cos(),2sin()),(1cosα,1sinα),因为点P′在曲线y(x>0)上,所以3=8cos()sin()=1sin(2)=1cos2α,即cos2,又0<α,所以sin2α.又1cosα•1sinα=8sin2α=823.所以点Q′不落在曲线y(x>0)上.20、(1)(2)【解析】

(1)根据正弦定理将,角化为边得,即,再由余弦定理求解(2)根据,由正弦定理,求边b,又,然后代入公式求解.【详解】(1)因为,由正弦定理得:,即,,又,.(2)因为由正弦定理得,又,所以.【点睛】本题主要考查了正弦定理和余弦定理的应用,还考查了运算求解的能力,属于中档题.21、(1),;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论