2025届宁夏石嘴山市三中数学高一下期末学业水平测试试题含解析_第1页
2025届宁夏石嘴山市三中数学高一下期末学业水平测试试题含解析_第2页
2025届宁夏石嘴山市三中数学高一下期末学业水平测试试题含解析_第3页
2025届宁夏石嘴山市三中数学高一下期末学业水平测试试题含解析_第4页
2025届宁夏石嘴山市三中数学高一下期末学业水平测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届宁夏石嘴山市三中数学高一下期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知某几何体的三视图如图所示,则该几何体的体积为A. B. C. D.2.在中,角,,所对的边分别为,,,且边上的高为,则的最大值是()A.8 B.6 C. D.43.经统计某射击运动员随机命中的概率可视为,为估计该运动员射击4次恰好命中3次的概率,现采用随机模拟的方法,先由计算机产生0到9之间取整数的随机数,用0,1,2没有击中,用3,4,5,6,7,8,9表示击中,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7525,0293,7140,9857,0347,4373,8638,7815,1417,55500371,6233,2616,8045,6011,3661,9597,7424,7610,4281根据以上数据,则可估计该运动员射击4次恰好命中3次的概率为()A. B. C. D.4.已知直线过点且与直线垂直,则该直线方程为()A. B.C. D.5.在前项和为的等差数列中,若,则=()A. B. C. D.6.已知函数的图象如图所示,则的解析式为()A. B.C. D.7.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是A.440 B.330C.220 D.1108.设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2 B.3 C.4 D.69.在中,内角所对的边分别为,且,则()A. B. C. D.10.各棱长均为的三棱锥的表面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知圆:,若对于圆:上任意一点,在圆上总存在点使得,则实数的取值范围为__________.12.对任意的θ∈0,π2,不等式113.已知在数列中,,,则数列的通项公式______.14.已知,则____.15.在三棱锥中,已知,,则三棱锥内切球的表面积为______.16.已知一组数1,2,m,6,7的平均数为4,则这组数的方差为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)若三点共线,求的关系;(2)若,求点的坐标.18.在中,角的对边分别为.若.(1)求;(2)求的面积的最大值.19.已知数列an满足an+1=2an(1)求证:数列bn(2)求数列an的前n项和为S20.在锐角三角形中,内角的对边分别为且.(1)求角的大小;(2)若,,求△的面积.21.近年来,我国自主研发的长征系列火箭的频频发射成功,标志着我国在该领域已逐步达到世界一流水平.火箭推进剂的质量为,去除推进剂后的火箭有效载荷质量为,火箭的飞行速度为,初始速度为,已知其关系式为齐奥尔科夫斯基公式:,其中是火箭发动机喷流相对火箭的速度,假设,,,是以为底的自然对数,,.(1)如果希望火箭飞行速度分别达到第一宇宙速度、第二宇宙速度、第三宇宙速度时,求的值(精确到小数点后面1位).(2)如果希望达到,但火箭起飞质量最大值为,请问的最小值为多少(精确到小数点后面1位)?由此指出其实际意义.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据三视图可知几何体为三棱锥,根据棱锥体积公式求得结果.【详解】由三视图可知,几何体为三棱锥三棱锥体积为:本题正确选项:【点睛】本题考查棱锥体积的求解,关键是能够通过三视图确定几何体为三棱锥,且通过三视图确定三棱锥的底面和高.2、D【解析】,这个形式很容易联想到余弦定理:cosA,①而条件中的“高”容易联想到面积,bcsinA,即a2=2bcsinA,②将②代入①得:b2+c2=2bc(cosA+sinA),∴=2(cosA+sinA)=4sin(A+),当A=时取得最大值4,故选D.点睛:三角形中最值问题,一般转化为条件最值问题:先根据正、余弦定理及三角形面积公式结合已知条件灵活转化边和角之间的关系,利用基本不等式或函数方法求最值.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.3、A【解析】

根据20组随机数可知该运动员射击4次恰好命中3次的随机数共8组,据此可求出对应的概率.【详解】由题意,该运动员射击4次恰好命中3次的随机数为:7525,0347,7815,5550,6233,8045,3661,7424,共8组,则该运动员射击4次恰好命中3次的概率为.故答案为A.【点睛】本题考查了利用随机模拟数表法求概率,考查了学生对基础知识的掌握.4、A【解析】

根据垂直关系求出直线斜率为,再由点斜式写出直线。【详解】由直线与直线垂直,可知直线斜率为,再由点斜式可知直线为:即.故选A.【点睛】本题考查两直线垂直,属于基础题。5、C【解析】

利用公式的到答案.【详解】项和为的等差数列中,故答案选C【点睛】本题考查了等差数列的前N项和,等差数列的性质,利用可以简化计算.6、D【解析】

由函数图象求出,由周期求出,由五点发作图求出的值,即可求出函数的解析式.【详解】解:根据函数的图象,可得,,所以.再根据五点法作图可得,所以,故.故选:D.【点睛】本题主要考查由函数的部分图像求解析式,属于基础题.7、A【解析】由题意得,数列如下:则该数列的前项和为,要使,有,此时,所以是第组等比数列的部分和,设,所以,则,此时,所以对应满足条件的最小整数,故选A.点睛:本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断.8、B【解析】由向量平行的性质,有2∶4=x∶6,解得x=3,选B考点:本题考查平面向量的坐标表示,向量共线的性质,考查基本的运算能力.9、C【解析】

根据题目条件结合三角形的正弦定理以及三角形内角和定理可得sinA,进而利用二倍角余弦公式得到结果.【详解】∵.∴sinAcosB=4sinCcosA﹣sinBcosA即sinAcosB+sinBcosA=4cosAsinC∴sinC=4cosAsinC∵1<C<π,sinC≠1.∴1=4cosA,即cosA,那么.故选C【点睛】本题考查了正弦定理及二倍角余弦公式的灵活运用,考查计算能力,属于基础题.10、C【解析】

判断三棱锥是正四面体,它的表面积就是四个三角形的面积,求出一个三角形的面积即可求解本题.【详解】由题意可知三棱锥是正四面体,各个三角形的边长为a,三棱锥的表面积就是四个全等三角形的面积,即,

所以C选项是正确的.【点睛】本题考查棱锥的表面积,考查空间想象能力,计算能力,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由,知为圆的切线,所以两圆外离,即圆心距大于两半径之和,代入方程即可。【详解】由,知为圆的切线,即在圆上任意一点都可以向圆作切线,当两圆外离时,满足条件,所以,,即,化简,得:,解得:或.【点睛】和圆半径所成夹角为,即是圆的切线,两圆外离表示圆心距大于两半径之和。12、-4,5【解析】1sin2θ+4cos2点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.13、【解析】

通过变形可知,累乘计算即得结论.【详解】∵(n+1)an=nan+1,∴,∴,,…,,累乘得:,又∵a1=1,∴an=n,故答案为:an=n.【点睛】本题考查数列的通项公式的求法,利用累乘法是解决本题的关键,注意解题方法的积累,属于中档题.14、【解析】

由于,则,然后将代入中,化简即可得结果.【详解】,,,故答案为.【点睛】本题考查了同角三角函数的关系,属于基础题.同角三角函数之间的关系包含平方关系与商的关系,平方关系是正弦与余弦值之间的转换,商的关系是正余弦与正切之间的转换.15、【解析】

先计算出三棱锥的体积,利用等体积法求出三棱锥的内切球的半径,再求出内切球的表面积。【详解】取CD中点为E,并连接AE、BE在中,由等腰三角形的性质可得,同理则在中点A到边BE的距离即为点A到平面BCD的距离h,在中,【点睛】本题综合考查了三棱锥的体积、三棱锥内切圆的求法、球的表面积,属于中档题.16、【解析】

先根据平均数计算出的值,再根据方差的计算公式计算出这组数的方差.【详解】依题意.所以方差为.故答案为:.【点睛】本小题主要考查平均数和方差的有关计算,考查运算求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)a+b=2;(2)(5,-3).【解析】

(1)求出和的坐标,然后根据两向量共线的等价条件可得所求关系式.(2)求出的坐标,根据得到关于的方程组,解方程组可得所求点的坐标.【详解】由题意知,,.(1)∵三点共线,∴∥,∴,∴.(2)∵,∴,∴,解得,∴点的坐标为.【点睛】本题考查向量共线的应用,解题的关键是把共线表示为向量的坐标的形式,进而转化为数的运算的问题,属于基础题.18、(1)(2)【解析】

(1)用正弦定理将式子化为,进行整理化简可得的值,即得角B;(2)由余弦定理可得关于的等式,再利用基本不等式和三角形面积公式可得面积最大值。【详解】(1)由题得,,,,解得,,.(2),由余弦定理得,,整理得,又,即,则的面积的最大值为.【点睛】本题考查用正弦定理求三角形内角,由余弦定理和基本不等式求三角形面积最大值,是基础题型。19、(1)证明见解析;(2)S【解析】

(1)计算得到bn+1bn(2)根据(1)知an【详解】(1)因为bn+1b所以数列bn(2)因为bn=aSn【点睛】本题考查了等比数列的证明,分组求和,意在考查学生的计算能力和对于数列方法的灵活运用.20、(1);(2).【解析】

(1)利用正弦定理及,便可求出,得到的大小;(2)利用(1)中所求的大小,结合余弦定理求出的值,最后再用三角形面积公式求出值.【详解】(1)由及正弦定理,得.因为为锐角,所以.(2)由余弦定理,得,又,所以,所以.考点:正余弦定理的综合应用及面积公式.21、(1)(2)见解析【解析】

(1)弄清题意,将相关数据代入齐奥尔科夫斯基公式:,即可得出各个等级的速度对应的的值;(2)弄清题意与相关名词,火箭起飞质量即为,将公式变形,分离出,解不等式即可得,的最小值为.【详解】(1)由题意可得,,,且,,当达到第一宇宙速

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论