北京师大附中2025届数学高一下期末联考模拟试题含解析_第1页
北京师大附中2025届数学高一下期末联考模拟试题含解析_第2页
北京师大附中2025届数学高一下期末联考模拟试题含解析_第3页
北京师大附中2025届数学高一下期末联考模拟试题含解析_第4页
北京师大附中2025届数学高一下期末联考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京师大附中2025届数学高一下期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某单位职工老年人有30人,中年人有50人,青年人有20人,为了了解职工的建康状况,用分层抽样的方法从中抽取10人进行体检,则应抽查的老年人的人数为()A.3 B.5 C.2 D.12.等差数列{an}中,若S1=1A.2019 B.1 C.1009 D.10103.已知随机事件中,与互斥,与对立,且,则()A.0.3 B.0.6 C.0.7 D.0.94.在△ABC中,AB=,AC=1,,△ABC的面积为,则()A.30° B.45° C.60° D.75°5.已知α、β为锐角,cosα=,tan(α−β)=−,则tanβ=()A. B.3 C. D.6.已知,并且是第二象限的角,那么的值等于()A. B. C. D.7.设变量想x、y满足约束条件为则目标函数的最大值为()A.0 B.-3 C.18 D.218.已知甲、乙两组数据用茎叶图表示如图所示,若它们的中位数相同,平均数也相同,则图中的的比值等于A. B. C. D.9.下列函数中最小正周期为的是()A. B. C. D.10.已知向量,,若,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的值域为_____________.12.已知,,若,则________.13.将正整数按下图方式排列,2019出现在第行第列,则______;12345678910111213141516………14.等差数列的前项和为,,,等比数列满足,.(1)求数列,的通项公式;(2)求数列的前15项和.15.已知直线:与圆交于,两点,过,分别作的垂线与轴交于,两点,若,则__________.16.已知中,的对边分别为,若,则的周长的取值范围是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求函数的定义域:(2)求函数的单调递减区间:(3)求函数了在区间上的最大值和最小值.18.“中国人均读书本(包括网络文学和教科书),比韩国的本、法国的本、日本的本、犹太人的本少得多,是世界上人均读书最少的国家”,这个论断被各种媒体反复引用.出现这样统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天名读书者进行调查,将他们的年龄分成段:,,,,,后得到如图所示的频率分布直方图.问:(1)估计在这名读书者中年龄分布在的人数;(2)求这名读书者年龄的平均数和中位数;(3)若从年龄在的读书者中任取名,求这两名读书者年龄在的人数恰为的概率.19.如图,已知平面平行于三棱锥的底面,等边所在的平面与底面垂直,且,设(1)求证:且;(2)求二面角的余弦值.20.已知函数,其图象的一个对称中心是,将的图象向左平移个单位长度后得到函数的图象.(1)求函数的解析式;(2)若对任意,当时,都有,求实数的最大值;(3)若对任意实数在上与直线的交点个数不少于6个且不多于10个,求实数的取值范围.21.已知圆.(1)过原点的直线被圆所截得的弦长为2,求直线的方程;(2)过外的一点向圆引切线,为切点,为坐标原点,若,求使最短时的点坐标.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

先由题意确定抽样比,进而可求出结果.【详解】由题意该单位共有职工人,用分层抽样的方法从中抽取10人进行体检,抽样比为,所以应抽查的老年人的人数为.故选A【点睛】本题主要考查分层抽样,会由题意求抽样比即可,属于基础题型.2、D【解析】

由等差数列{an}中,S1=1,S【详解】∵等差数列{an}中,S∴S即15=5+10d,解得d=1,∴S故选:D.【点睛】本题考查等差数列基本量的求法,考查等差数列的性质等基础知识,考查运算求解能力,属于基础题.3、C【解析】

由对立事件概率关系得到B发生的概率,再由互斥事件的概率计算公式求P(A+B).【详解】因为,事件B与C对立,所以,又,A与B互斥,所以,故选C.【点睛】本题考查互斥事件的概率,能利用对立事件概率之和为1进行计算,属于基本题.4、C【解析】

试题分析:由三角形面积公式得,,所以.显然三角形为直角三角形,且,所以.考点:解三角形.5、B【解析】

利用角的关系,再利用两角差的正切公式即可求出的值.【详解】因为,且为锐角,则,所以,因为,所以故选B.【点睛】主要考查了两角差的正切公式,同角三角函数的平方关系,属于中档题.对于给值求值问题,关键是寻找已知角(条件中的角)与未知角(问题中的角)的关系,用已知角表示未知角,从而将问题转化为求已知角的三角函数值,再利用两角和与差的三角函数公式、二倍角公式以及诱导公式即可求出.6、A【解析】

根据同角三角函数关系,进行求解即可.【详解】因为,故又因为是第二象限的角,故故.故选:A.【点睛】本题考查同角三角函数关系的简单使用,属基础题.7、C【解析】

画出可行域如下图所示,由图可知,目标函数在点处取得最大值,且最大值为.故选C.【点睛】本小题主要考查利用线性规划求线性目标函数的最大值.这种类型题目的主要思路是:首先根据题目所给的约束条件,画图可行域;其次是求得线性目标函数的基准函数;接着画出基准函数对应的基准直线;然后通过平移基准直线到可行域边界的位置;最后求出所求的最值.属于基础题.8、A【解析】

从茎叶图提取甲、乙两组数据中的原始数据,并按从小到大排列,分别得到中位数,并计算各自的平均数,再根据中位数、平均值相等得到关于的方程.【详解】甲组数据:,中位数为,乙组数据:,中位数为:,所以,所以,故选A.【点睛】本题考查中位数、平均数的概念与计算,对甲组数据排序时,一定是最大,乙组数据中一定是最小.9、C【解析】

对A选项,对赋值,即可判断其最小正周期不是;利用三角函数的周期公式即可判断B、D的最小正周期不是,问题得解.【详解】对A选项,令,则,不满足,所以不是以为周期的函数,其最小正周期不为;对B选项,的最小正周期为:;对D选项,的最小正周期为:;排除A、B、D故选C【点睛】本题主要考查了三角函数的周期公式及周期函数的定义,还考查了赋值法,属于基础题.10、D【解析】

由共线向量的坐标表示可得出关于实数的方程,解出即可.【详解】向量,,且,,解得.故选:D.【点睛】本题考查利用共线向量的坐标表示求参数的值,解题时要熟悉共线向量坐标之间的关系,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

分析函数在区间上的单调性,由此可求出该函数在区间上的值域.【详解】由于函数和函数在区间上均为增函数,所以,函数在区间上也为增函数,且,,当时,,因此,函数的值域为.故答案为:.【点睛】本题考查函数值域的求解,解题的关键就是判断出函数的单调性,考查分析问题和解决问题的能力,属于中等题.12、【解析】

先算出的坐标,然后利用即可求出【详解】因为,所以因为,所以即,解得故答案为:【点睛】本题考查的是向量在坐标形式下的相关计算,较简单.13、128【解析】

观察数阵可知:前行一共有个数,且第行的最后一个数为,且第行有个数,由此可推断出所在的位置.【详解】因为前行一共有个数,且第行的最后一个数为,又因为,所以在第行,且第45行最后数为,又因为第行有个数,,所以在第列,所以.故答案为:.【点睛】本题考查数列在数阵中的应用,着重考查推理能力,难度一般.分析数列在数阵中的应用问题,可从以下点分析问题:观察每一行数据个数与行号关系,同时注意每一行开始的数据或结尾数据,所有行数据的总个数,注意等差数列的求和公式的运用.14、(1),;(2)125.【解析】

(1)直接利用等差数列,等比数列的公式得到答案.(2),前5项为正,后面为负,再计算数列的前15项和.【详解】解:(1)联立,解得,,故,,联立,解得,故.(2).【点睛】本题考查了等差数列,等比数列,绝对值和,判断数列的正负分界处是解题的关键.15、4【解析】

由题,根据垂径定理求得圆心到直线的距离,可得m的值,既而求得CD的长可得答案.【详解】因为,且圆的半径为,所以圆心到直线的距离为,则由,解得,代入直线的方程,得,所以直线的倾斜角为,由平面几何知识知在梯形中,.故答案为4【点睛】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.16、【解析】中,由余弦定理可得,∵,∴,化简可得.∵,∴,解得(当且仅当时,取等号).故.再由任意两边之和大于第三边可得,故有,故的周长的取值范围是,故答案为.点睛:由余弦定理求得,代入已知等式可得,利用基本不等式求得,故.再由三角形任意两边之和大于第三边求得,由此求得△ABC的周长的取值范围.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1).(2),.(3),.【解析】

(1)根据分母不等于求出函数的定义域.(2)化简函数的表达式,利用正弦函数的单调减区间求解函数的单调减区间即可.(3)通过满足求出相位的范围,利用正弦函数的值域,求解函数的最大值和最小值.【详解】解:(1)函数的定义域为:,即,(2),令且,解得:,即所以的单调递减区间:,.(3)由,可得:,当,即:时,当,即:时,【点睛】本题考查三角函数的最值以及三角函数的化简与应用,两角和与差的三角函数的应用考查计算能力.18、(1);(2);(3).【解析】

(1)识别频率直方图,注意其纵轴的意义;(2)在频率直方图中平均数是每组数据的组中值乘以频率,中位数是排在最中间的数;(3)求出古典概型中的基本事情总数和具体事件数,利用比值求解.【详解】(1)由频率分布直方图知,年龄在的频率为所以,名读书者年龄分布在的人数为人.(2)名读书者年龄的平均数为:设中位数为,解之得,即名读书者年龄的中位数为岁.(3)年龄在的读书者有人,记为,;年龄在的读数者有人,记为,,,从上述人中选出人,共有如下基本事件:,共有基本事件数为个,记选取的两名读者中恰好有一人年龄在中为事件,则事件包含的基本事件数为个:故.【点睛】本题考查识别频率直方图和样本的数字特征,属于基础题.19、(1)证明见解析;(1)【解析】

(1)由平面∥平面,根据面面平行的性质定理,可得,,再由,得到.由平面平面,根据面面垂直的性质定理可得平面,从而有.(2)过作于,根据题意有平面,过D作于H,连结AH,由三垂线定理知,所以是二面角的平面角.然后在在中,在中,利用三角形相似求得再在求解.【详解】(1)证明:∵平面∥平面,∴,,∵,,又∵平面平面,平面平面,∴平面,平面,∴.(2)过作于,∵为正三角形,∴D为中点,∵平面∴又∵,∴平面.在等边三角形中,,过D作于H,连结AH,由三垂线定理知,∴是二面角的平面角.在中,~,,∴,,∴.【点睛】本题主要考查几何体中面面平行的性质定理和面面垂直的性质定理及二角面角问题,还考查了空间想象,抽象概括,推理论证的能力,属于中档题.20、(1);(2);(3).【解析】

(1)根据正弦函数的对称性,可得函数的解析式,再由函数图象的平移变换法则,可得函数的解析式;(2)将不等式进行转化,得到函数在[0,t]上为增函数,结合函数的单调性进行求解即可;(3)求出的解析式,结合交点个数转化为周期关系进行求解即可.【详解】(1)因为函数,其图象的一个对称中心是,所以有,的图象向左平移个单位长度后得到函数的图象.所以;(2)由,构造新函数为,由题意可知:任意,当时,都有,说明函数在上是单调递增函数,而的单调递增区间为:,而,所以单调递增区间为:,因此实数的最大值为:;(3),其最小正周期,而区间的长度为,直线的交点个数不少于6个且不多于10个,则,且,解得:.【点睛】本题考查了正弦型函数的对称性和图象变换,考查了正弦型函数的单调性,考查了已知两函数图象的交点个数求参数问题,考查了数学运算能力.21、(1)或;(2)【解析】

(1)利用垂径定理求出圆心到直线的距离,再分过原点的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论