新疆维吾尔自治区喀什二中2024年数学高一下期末学业水平测试模拟试题含解析_第1页
新疆维吾尔自治区喀什二中2024年数学高一下期末学业水平测试模拟试题含解析_第2页
新疆维吾尔自治区喀什二中2024年数学高一下期末学业水平测试模拟试题含解析_第3页
新疆维吾尔自治区喀什二中2024年数学高一下期末学业水平测试模拟试题含解析_第4页
新疆维吾尔自治区喀什二中2024年数学高一下期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆维吾尔自治区喀什二中2024年数学高一下期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若角的终边经过点,则()A. B. C. D.2.若三棱锥的所有顶点都在球的球面上,平面,,,且三棱锥的体积为,则球的体积为()A. B. C. D.3.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是A.440 B.330C.220 D.1104.若f(x)=af1(x)bf2(x)a,b∈R已知g1(x)=(-x2+12x-20)12生成函数g(x),已知g(4)=2(6-3),A.1 B.4 C.6 D.95.如图所示,已知正三棱柱的所有棱长均为1,则三棱锥的体积为()A. B. C. D.6.如图所示,等边的边长为2、为的中点,且也是等边三角形,若以点为中心按逆时针方向旋转后到达的位置,则在转动过程中的取值范围是()A. B. C. D.7.已知等差数列的前项的和为,若,则等于()A.81 B.90 C.99 D.1808.在长方体中,,,则直线与平面所成角的正弦值为()A. B. C. D.9.2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除:(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用…等,其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元.新的个税政策的税率表部分内容如下:级数一级二级三级…每月应纳税所得额元(含税)…税率(%)31020…现有李某月收入为19000元,膝下有一名子女,需赡养老人(除此之外无其它专项附加扣除),则他该月应交纳的个税金额为()A.570 B.890 C.1100 D.190010.函数,是A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数二、填空题:本大题共6小题,每小题5分,共30分。11.两圆,相切,则实数=______.12.若数列的前4项分别是,则它的一个通项公式是______.13.已知是内的一点,,,则_______;若,则_______.14.已知,且为第三象限角,则的值等于______;15.已知数列,若对任意正整数都有,则正整数______;16.底面边长为,高为的直三棱柱形容器内放置一气球,使气球充气且尽可能的膨胀(保持球的形状),则气球表面积的最大值为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某厂每年生产某种产品万件,其成本包含固定成本和浮动成本两部分.已知每年固定成本为20万元,浮动成本,.若每万件该产品销售价格为40万元,且每年该产品产销平衡.(1)设年利润为(万元),试求与的关系式;(2)年产量为多少万件时,该厂所获利润最大?并求出最大利润.18.设和是两个等差数列,记(),其中表示,,这个数中最大的数.已知为数列的前项和,,.(1)求数列的通项公式;(2)若,求,,的值,并求数列的通项公式;(3)求数列前项和.19.在△ABC中,D为BC边上一点,,设,.(1)试、用表示;(2)若,,且与的夹角为60°,求及的值.20.设函数,其中,.(1)设,若函数的图象的一条对称轴为直线,求的值;(2)若将的图象向左平移个单位,或者向右平移个单位得到的图象都过坐标原点,求所有满足条件的和的值;(3)设,,已知函数在区间上的所有零点依次为,且,,求的值.21.在锐角中角,,的对边分别是,,,且.(1)求角的大小;(2)若,求面积的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据任意角的三角函数的定义,可以直接求到本题答案.【详解】因为点在角的终边上,所以.故选:B【点睛】本题主要考查利用任意角的三角函数的定义求值.2、A【解析】

由的体积计算得高,已知将三棱锥的外接球,转化为长2,宽2,高的长方体的外接球,求出半径,可得答案.【详解】∵,,故三棱锥的底面面积为,由平面,得,又三棱锥的体积为,得,所以三棱锥的外接球,相当于长2,宽2,高的长方体的外接球,故球半径,得,故外接球的体积.故选:A.【点睛】本题考查了三棱锥外接球的体积,三棱锥体积公式的应用,根据已知计算出球的半径是解答的关键,属于中档题.3、A【解析】由题意得,数列如下:则该数列的前项和为,要使,有,此时,所以是第组等比数列的部分和,设,所以,则,此时,所以对应满足条件的最小整数,故选A.点睛:本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断.4、B【解析】

根据变换T(m,n)可生成函数g(x)=mg2(x)-ng1(x)=m(-x2+10x)1【详解】由题意可知g(x)=mg又g(4)=2(6-解得m=n=1,所以g(x)=又g(x)=10-x因为y=1x+x-2在x∈[2,10]上单调递减且为正值,y=10-x在x∈[2,10]上单调递减且为正值,所以g(x)=10-x(【点睛】本题主要考查了函数的单调性,利用单调性求函数的最大值,涉及创设新情景及函数式的变形,属于难题5、A【解析】

利用等体法即可求解.【详解】三棱锥的体积等于三棱锥的体积,因此,三棱锥的体积为,故选:A.【点睛】本题考查了等体法求三棱锥的体积、三棱锥的体积公式,考查了转化与化归思想的应用,属于基础题.6、D【解析】

设,,则,则,将其展开,运用向量的数量积的定义,化简得到,再由余弦函数的性质,即可得到范围.【详解】设,,则,则,由于,则,则.故选:D【点睛】本题考查平面向量的数量积的定义,考查三角函数的化简和求最值,考查运算能力,属于中档题.7、B【解析】

根据已知得到的值,利用等差数列前项和公式以及等差数列下标和的性质,求得的值.【详解】依题意,所以,故选B.【点睛】本小题主要考查等差数列的性质,考查等差数列前项和的计算,属于基础题.8、D【解析】

由题意,由于图形中已经出现了两两垂直的三条直线,所以可以利用空间向量的方法求解直线与平面所成的夹角.【详解】解:以点为坐标原点,以所在的直线为轴、轴、轴,建立空间直角坐标系,

则,

为平面的一个法向量.

∴直线与平面所成角的正弦值为.故选:D.【点睛】此题重点考查了利用空间向量,抓住直线与平面所成的角与该直线的方向向量与平面的法向量的夹角之间的关系,利用向量方法解决立体几何问题.9、B【解析】

根据题意,分段计算李某的个人所得税额,即可求解,得到答案.【详解】由题意,李某月应纳税所得额(含税)为元,不超过3000的部分的税额为元,超过3000元至12000元的部分税额为元,所以李某月应缴纳的个税金额为元.故选:B.【点睛】本题主要考查了分段函数的实际应用与函数值的计算问题,其中解答中认真审题,合理利用分段函数进行求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.10、A【解析】

判断函数函数,的奇偶性,求出其周期即可得到结论.【详解】设则故函数函数,是奇函数,由故函数,是最小正周期为的奇函数.故选A.【点睛】本题考查正弦函数的奇偶性和周期性,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、0,±2【解析】

根据题意,由圆的标准方程分析两圆的圆心与半径,分两圆外切与内切两种情况讨论,求出a的值,综合即可得答案.【详解】根据题意:圆的圆心为(0,0),半径为1,圆的圆心为(﹣4,a),半径为5,若两圆相切,分2种情况讨论:当两圆外切时,有(﹣4)2+a2=(1+5)2,解可得a=±2,当两圆内切时,有(﹣4)2+a2=(1﹣5)2,解可得a=0,综合可得:实数a的值为0或±2;故答案为0或±2.【点睛】本题考查圆与圆的位置关系,关键是掌握圆与圆的位置关系的判定方法.12、【解析】

根据等比数列的定义即可判断出该数列是以为首项,为公比的等比数列,根据等比数列的通项公式即可写出该数列的一个通项公式.【详解】解:∵,该数列是以为首项,为公比的等比数列,该数列的通项公式是:,故答案为:.【点睛】本题主要考查等比数列的定义以及等比数列的通项公式,属于基础题.13、【解析】

对式子两边平方,再利用向量的数量积运算即可;式子两边分别与向量,进行数量积运算,得到关于的方程组,解方程组即可得答案.【详解】∵,∴;∵,∴解得:,∴.故答案为:;.【点睛】本题考查向量数量积的运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意将向量等式转化为数量关系的方法.14、【解析】

根据条件以及诱导公式计算出的值,再由的范围计算出的值,最后根据商式关系:求得的值.【详解】因为,所以,又因为且为第三象限角,所以,所以.故答案为:.【点睛】本题考查三角函数中的给值求值问题,中间涉及到诱导公式以及同角三角函数的基本关系,难度一般.三角函数中的求值问题,一定要注意角的范围,避免出现多解.15、9【解析】

分析数列的单调性,以及数列各项的取值正负,得到数列中的最大项,由此即可求解出的值.【详解】因为,所以时,,时,,又因为在上递增,在也是递增的,所以,又因为对任意正整数都有,所以.故答案为:.【点睛】本题考查数列的单调性以及数列中项的正负判断,难度一般.处理数列单调性或者最值的问题时,可以采取函数的思想来解决问题,但是要注意到数列对应的函数的定义域为.16、【解析】由题意,气球充气且尽可能地膨胀时,气球的半径为底面三角形内切圆的半径

∵底面三角形的边长分别为,∴底面三角形的边长为直角三角形,利用等面积可求得∴气球表面积为4π.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)产量(万件)时,该厂所获利润最大为100万元.【解析】

(1)由销售收入减去成本可得利润;(2)分段求出的最大值,然后比较可得.【详解】(1)由题意;即;(2)时,,时,,当时,在是递增,在上递减,时,综上,产量(万件)时,该厂所获利润最大为100万元.【点睛】本题考查函数模型的应用,根据所给函数模型求出函数解析式,然后由分段函数性质分段求出最大值,比较后得出函数最大值.考查学生的应用能力.18、(1);(2),,,;(3)【解析】

(1)根据题意,化简得,运用已知求公式,即可求解通项公式;(2)根据题意,写出通项,根据定义,令,可求解,,的值,再判断单调递减,可求数列的通项公式;(3)由(1)(2)的数列、的通项公式,代入数列中,运用错位相减法求和.【详解】(1)∵,∴,当时,,化简得,∴,当时,,,∵,∴,∴是首项为1,公差为2的等差数列,∴.(2),,,当时,,∴单调递减,所以.(3)作差,得【点睛】本题考查(1)已知求公式;(2)数列的单调性;(3)错位相减法求和;考查计算能力,考查分析问题解决问题的能力,综合性较强,有一定难度.19、(1)(2),【解析】

(1)用表示,再用,表示即可;(2)由向量数量积运算及模的运算即可得解.【详解】解:(1)因为,所以,又,,所以;(2),,且与的夹角为60°,所以,则,,故.【点睛】本题考查了向量的减法运算,重点考查了向量数量积运算及模的运算,属基础题.20、(1);(2),;(3)【解析】

(1)根据对称轴对应三角函数最值以及计算的值;(2)根据条件列出等式求解和的值;(3)根据图象利用对称性分析待求式子的特点,然后求值.【详解】(1),因为是一条对称轴,对应最值;又因为,所以,所以,则;(2)由条件知:,可得,则,又因为,所以,则,故有:,当为奇数时,令,所以,当为偶数时,令,所以,当时,,又因为,所以;(3)分别作出(部分图像)与图象如下:因为,故共有个;记对称轴为,据图有:,,,,,则,令,则,又因为,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论