版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省上饶市民校联盟2024届数学高一下期末检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数满足下列条件:①定义域为;②当时;③.若关于x的方程恰有3个实数解,则实数k的取值范围是A. B. C. D.2.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为A.35 B.20 C.18 D.93.如图,在坡度一定的山坡处测得山顶上一建筑物的顶端对于山坡的斜度为,向山顶前进100米到达后,又测得对于山坡的斜度为,若米,山坡对于地平面的坡角为,则()A. B. C. D.4.某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,则恰好抽到2幅不同种类的概率为()A. B. C. D.5.已知在中,,那么的值为()A. B. C. D.6.已知数列满足,,则数列的前5项和()A.15 B.28 C.45 D.667.已知圆的方程为,则圆心坐标为()A. B. C. D.8.若()A. B. C. D.9.记Sn为等差数列{an}的前A.an=2n-5 B.an=3n-1010.已知命题,,若是真命题,则实数的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在半径为的球中有一内接正四棱柱(底面是正方形,侧棱垂直底面),当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是__________.12.如图所示,已知点,单位圆上半部分上的点满足,则向量的坐标为________.13.己知数列满足就:,,若,写出所有可能的取值为______.14.若复数z满足z⋅2i=z2+1(其中i15.各项均为实数的等比数列的前项和为,已知成等差数列,则数列的公比为________.16.在空间直角坐标系中,三棱锥的各顶点都在一个半径为的球面上,为球心,,,,,则球的体积与三棱锥的体积之比是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在相同条件下对自行车运动员甲、乙两人进行了6次测试,测得他们的最大速度(单位:)的数据如下:甲273830373531乙332938342836试判断选谁参加某项重大比赛更合适.18.若数列满足:存在正整数,对任意的,使得成立,则称为阶稳增数列.(1)若由正整数构成的数列为阶稳增数列,且对任意,数列中恰有个,求的值;(2)设等比数列为阶稳增数列且首项大于,试求该数列公比的取值范围;(3)在(1)的条件下,令数列(其中,常数为正实数),设为数列的前项和.若已知数列极限存在,试求实数的取值范围,并求出该极限值.19.已知四棱锥的底面ABCD是菱形,平面ABCD,,,F,G分别为PD,BC中点,.(Ⅰ)求证:平面PAB;(Ⅱ)求三棱锥的体积;(Ⅲ)求证:OP与AB不垂直.20.单调递增的等差数列满足,且成等比数列.(1)求数列的通项公式;(2)设,求数列的前项和.21.已知,,,求:的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
分析:先根据条件确定函数图像,再根据过定点(1,0)的直线与图像关系确定实数k的取值范围.详解:因为,当时;所以可作函数在上图像,如图,而直线过定点A(1,0),根据图像可得恰有3个实数解时实数k的取值范围为,选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.2、C【解析】试题分析:模拟算法:开始:输入成立;,成立;,成立;,不成立,输出.故选C.考点:1.数学文化;2.程序框图.3、C【解析】
先在中利用正弦定理求出BC的值,再在中由正弦定理解出,再计算.【详解】在中,,在中,,又∵,∴.故选C.【点睛】本题考查解三角形在实际中的应用,属于基础题.4、B【解析】
算出基本事件的总数和随机事件中基本事件的个数,利用古典概型的概率的计算公式可求概率.【详解】设为“恰好抽到2幅不同种类”某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,基本事件总数,恰好抽到2幅不同种类包含的基本事件个数,则恰好抽到2幅不同种类的概率为.故选B.【点睛】计算出所有的基本事件的总数及随机事件中含有的基本事件的个数,利用古典概型的概率计算即可.计数时应该利用排列组合的方法.5、A【解析】
,不妨设,,则,选A.6、C【解析】
根据可知数列为等差数列,再根据等差数列的求和性质求解即可.【详解】因为,故数列是以4为公差,首项的等差数列.故.故选:C【点睛】本题主要考查了等差数列的判定与等差数列求和的性质与计算,属于基础题.7、C【解析】试题分析:的方程变形为,圆心为考点:圆的方程8、D【解析】故.【考点定位】本题主要考查基本不等式的应用及指数不等式的解法,属于简单题.9、A【解析】
等差数列通项公式与前n项和公式.本题还可用排除,对B,a5=5,S4=4(-7+2)【详解】由题知,S4=4a1+【点睛】本题主要考查等差数列通项公式与前n项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.10、A【解析】
由题意知,不等式有解,可得出,可得出关于实数的不等式,即可解得实数的取值范围.【详解】已知命题,,若是真命题,则不等式有解,,解得.因此,实数的取值范围是.故选:A.【点睛】本题考查利用全称命题的真假求参数,涉及一元二次不等式有解的问题,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据正四棱柱外接球半径的求解方法可得到正四棱柱底面边长和高的关系,利用基本不等式得到,得到侧面积最大值为;根据球的表面积公式求得球的表面积,作差得到结果.【详解】设球内接正四棱柱的底面边长为,高为则球的半径:正四棱柱的侧面积:球的表面积:当正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差为:本题正确结果:【点睛】本题考查多面体的外接球的相关问题的求解,关键是能够根据外接球半径构造出关于正棱柱底面边长和高的关系式,利用基本不等式求得最值;其中还涉及到球的表面积公式的应用.12、【解析】
设点,由和列方程组解出、的值,可得出向量的坐标.【详解】设点的坐标为,则,由,得,解得,因此,,故答案为.【点睛】本题考查向量的坐标运算,解题时要将一些条件转化为与向量坐标相关的等式,利用方程思想进行求解,考查运算求解能力,属于中等题.13、【解析】(1)若为偶数,则为偶,故①当仍为偶数时,故②当为奇数时,故得m=4。(2)若为奇数,则为偶数,故必为偶数,所以=1可得m=514、1【解析】设z=a+bi,a,b∈R,则由z⋅2则-2b=a2+b2+12a=015、【解析】
根据成等差数列得到,计算得到答案.【详解】成等差数列,则故答案为:【点睛】本题考查了等差数列,等比数列的综合应用,意在考查学生对于数列公式的灵活运用.16、【解析】
首先根据坐标求出三棱锥的体积,再计算出球的体积即可.【详解】有题知建立空间直角坐标系,如图所示由图知:平面,...故答案为:【点睛】本题主要考查三棱锥的外接球,根据题意建立空间直角坐标系为解题的关键,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、乙,理由见解析.【解析】
分别求解两人的测试数据的平均数和方差,然后进行判定.【详解】甲的平均数为:,方差为:;乙的平均数为:,方差为:;因为,,所以选择乙参加比赛较为合适.【点睛】本题主要考查统计量的求解及决策问题,平均数表示平均水平的高低,方差表示稳定性,侧重考查数据分析的核心素养.18、(1);(2);(3).【解析】
(1)设,由题意得出,求出正整数的值即可;(2)根据定义可知等比数列中的奇数项构成的等比数列为阶稳增数列,偶数项构成的等比数列也为阶稳增数列,分和两种情况讨论,列出关于的不等式,解出即可;(3)求出,然后分、和三种情况讨论,求出,结合数列的极限存在,求出实数的取值范围.【详解】(1)设,由于数列为阶稳增数列,则,对任意,数列中恰有个,则数列中的项依次为:、、、、、、、、、、、、、、、、,设数列中值为的最大项数为,则,由题意可得,即,,解得,因此,;(2)由于等比数列为阶稳增数列,即对任意的,,且.所以,等比数列中的奇数项构成的等比数列为阶稳增数列,偶数项构成的等比数列也为阶稳增数列.①当时,则等比数列中每项都为正数,由可得,整理得,解得;②当时,(i)若为正奇数,可设,则,由,得,即,整理得,解得;(ii)若为正偶数时,可设,则,由,得,即,整理得,解得.所以,当时,等比数列为阶稳增数列.综上所述,实数的取值范围是;(3),由(1)知,则.①当时,,,则,此时,数列的极限不存在;②当时,,,上式下式得,所以,,则.(i)若时,则,此时数列的极限不存在;(ii)当时,,此时,数列的极限存在.综上所述,实数的取值范围是.【点睛】本题考查数列新定义“阶稳增数列”的应用,涉及等比数列的单调性问题、数列极限的存在性问题,同时也考查了错位相减法求和,解题的关键就是理解新定义“阶稳增数列”,考查分析问题和解决问题能力,考查了分类讨论思想的应用,属于难题.19、(Ⅰ)见解析(Ⅱ)(Ⅲ)见解析【解析】
(Ⅰ)连接,,由已知结合三角形中位线定理可得平面,再由面面平行的判断可得平面平面,进而可得平面;(Ⅱ)首先证明平面,而为的中点,然后利用等积法求三棱锥的体积;(Ⅲ)直接利用反证法证明与不垂直.【详解】(Ⅰ)如图,连接,∵是中点,是中点,∴,而平面,平面,∴平面,又∵是中点,是中点,∴,而平面,平面,∴平面,又∴平面平面,即平面.(Ⅱ)∵底面,∴,又四边形为菱形,∴,又,∴平面,而为的中点,∴.(Ⅲ)假设,又,且,∴平面,则,与矛盾,∴假设错误,故与不垂直.【点睛】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用反证法证明线线垂直问题,训练了利用等积法求解多面体的体积,属于中档题.20、(1);(2).【解析】
(1)设等差数列的公差为,,运用等差数列的通项公式和等比数列中项性质,解方程可得公差,进而得到所求通项公式;(2)求得,再用裂项相消
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《细胞免疫检测技术》课件
- 微课人力资源管理课程简介财经管理人力资源管理系
- n4护士述职报告
- 中小学水上交通安全知识
- 业务销售工作规划
- 低血糖的预防及应急预案
- 《公司法概论》课件
- 山东省枣庄市2024年中考化学真题【附答案】
- 医疗学术报告
- 数学学案:课堂导学“且”与“或”“非”(否定)
- 班主任工作经验分享如何成为优秀的班主任
- 古诗文系列课件模板-山房春事二首
- 2024年上海市第二十七届初中物理竞赛初赛试题及答案
- 2011年认识实习报告
- 水务公司招聘笔试题库及答案
- 医疗垃圾分类与处理的人员培训与资质要求
- 审核的改进计划和措施
- 《旅游管理》专业调研报告
- 2024野生哺乳动物及栖息地调查技术规程
- 2024年中医药知识与技能竞赛题库附含答案
- 2023年6月大学生英语四级真题试卷及详细答案(三套)
评论
0/150
提交评论