![山东新2025届高一数学第二学期期末达标检测模拟试题含解析_第1页](http://file4.renrendoc.com/view2/M00/1C/2E/wKhkFmZjR-aAZgl6AAH6VCNXvrU730.jpg)
![山东新2025届高一数学第二学期期末达标检测模拟试题含解析_第2页](http://file4.renrendoc.com/view2/M00/1C/2E/wKhkFmZjR-aAZgl6AAH6VCNXvrU7302.jpg)
![山东新2025届高一数学第二学期期末达标检测模拟试题含解析_第3页](http://file4.renrendoc.com/view2/M00/1C/2E/wKhkFmZjR-aAZgl6AAH6VCNXvrU7303.jpg)
![山东新2025届高一数学第二学期期末达标检测模拟试题含解析_第4页](http://file4.renrendoc.com/view2/M00/1C/2E/wKhkFmZjR-aAZgl6AAH6VCNXvrU7304.jpg)
![山东新2025届高一数学第二学期期末达标检测模拟试题含解析_第5页](http://file4.renrendoc.com/view2/M00/1C/2E/wKhkFmZjR-aAZgl6AAH6VCNXvrU7305.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东新2025届高一数学第二学期期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知锐角△ABC的面积为,BC=4,CA=3,则角C的大小为()A.75° B.60° C.45° D.30°2.由小到大排列的一组数据,,,,,其中每个数据都小于,那么对于样本,,,,,的中位数可以表示为()A. B. C. D.3.直线的斜率为()A. B. C. D.4.将两个长、宽、高分别为5,4,3的长方体垒在一起,使其中两个面完全重合,组成一个大长方体,则大长方体的外接球表面积的最大值为()A. B. C. D.5.已知直线与直线垂直,则()A. B. C.或 D.或6.若圆上恰有3个点到直线的距离为1,,则与间的距离为()A.1 B.2 C. D.37.已知空间中两点,则长为()A. B. C. D.8.采用系统抽样方法从人中抽取人做问卷调查,为此将他们随机编号为,,,,分组后某组抽到的号码为1.抽到的人中,编号落入区间的人数为()A.10 B. C.12 D.139.在同一直角坐标系中,函数且的图象可能是()A. B.C. D.10.已知向量,,且与的夹角为,则()A. B.2 C. D.14二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,则______.12.如图所示,隔河可以看到对岸两目标,但不能到达,现在岸边取相距的两点,测得(在同一平面内),则两目标间的距离为_________.13.函数的最小正周期为________14.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3:5:7,现用分层抽样的方法抽出容量为的样本,其中甲种产品有18件,则样本容量=.15.若,则______,______.16.函数的单调增区间是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若的最小值为.(1)求的表达式;(2)求能使的值,并求当取此值时,的最大值.18.(1)已知,求的值(2)若,,且,,求的值19.已知,,求的值.20.如图,在平行四边形中,边所在直线的方程为,点.(Ⅰ)求直线的方程;(Ⅱ)求边上的高所在直线的方程.21.(已知函数.(I)求函数的最小正周期及在区间上的最大值和最小值;(II)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:由三角形的面积公式,得,即,解得,又因为三角形为锐角三角形,所以.考点:三角形的面积公式.2、C【解析】
根据不等式的基本性质,对样本数据按从小到大排列为,取中间的平均数.【详解】,,则该组样本的中位数为中间两数的平均数,即.【点睛】考查基本不等式性质运用和中位数的定义.3、A【解析】
化直线方程为斜截式求解.【详解】直线可化为,∴直线的斜率是,故选:A.【点睛】本题考查直线方程,将一般方程转化为斜截式方程即可得直线的斜率,属于基础题.4、B【解析】
要计算长方体的外接球表面积就是要求出外接球的半径,根据长方体的对角线是外接球的直径这一性质,就可以求出外接球的表面积,分类讨论:(1)长宽的两个面重合;(2)长高的两个面重合;(3)高宽两个面重合,分别计算出新长方体的对角线,然后分别计算出外接球的表面积,最后通过比较即可求出最大值.【详解】(1)当长宽的两个面重合,新的长方体的长为5,宽为4,高为6,对角线长为:,所以大长方体的外接球表面积为;(2)当长高两个面重合,新的长方体的长5,宽为8,高为3,对角线长为:,所以大长方体的外接球表面积为;(3)当宽高两个面重合,新的长方体的长为10,宽为4,高为3,对角线长为:,所以大长方体的外接球表面积为,显然大长方体的外接球表面积的最大值为,故本题选B.【点睛】本题考查了长方体外接球的半径的求法,考查了分类讨论思想,考查了球的表面积计算公式,考查了数学运算能力.5、D【解析】
由垂直,可得,即可求出的值.【详解】直线与直线垂直,,解得或.故选D.【点睛】对于直线:和直线:,①;②.6、D【解析】
根据圆上有个点到直线的距离为,得到圆心到直线的距离为,由此列方程求得的值,再利用两平行直线间的距离公式,求得与间的距离.【详解】由于圆的圆心为,半径为,且圆上有个点到直线的距离为,故到圆心到直线的距离为,即,由于,故上式解得.所以.由两平行直线间的距离公式有,故选D.【点睛】本小题主要考查直线和圆的位置关系,考查两平行直线间的距离公式,属于基础题.7、C【解析】
根据空间中的距离公式,准确计算,即可求解,得到答案.【详解】由空间中的距离公式,可得,故选C.【点睛】本题主要考查了空间中的距离公式,其中解答中熟记空间中的距离公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.8、C【解析】
由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,求得此等差数列的通项公式为an=30n﹣19,由401≤30n﹣21≤755,求得正整数n的个数,即可得出结论.【详解】∵960÷32=30,∴每组30人,∴由题意可得抽到的号码构成以30为公差的等差数列,又某组抽到的号码为1,可知第一组抽到的号码为11,∴由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,∴等差数列的通项公式为an=11+(n﹣1)30=30n﹣19,由401≤30n﹣19≤755,n为正整数可得14≤n≤25,∴做问卷C的人数为25﹣14+1=12,故选C.【点睛】本题主要考查等差数列的通项公式,系统抽样的定义和方法,根据系统抽样的定义转化为等差数列是解决本题的关键,比较基础.9、D【解析】
本题通过讨论的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当时,函数过定点且单调递减,则函数过定点且单调递增,函数过定点且单调递减,D选项符合;当时,函数过定点且单调递增,则函数过定点且单调递减,函数过定点且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论的不同取值范围,认识函数的单调性.10、A【解析】
首先求出、,再根据计算可得;【详解】解:,,又,且与的夹角为,所以.故选:A【点睛】本题考查平面向量的数量积以及运算律,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
求出,然后由模的平方转化为向量的平方,利用数量积的运算计算.【详解】由题意得,.,.,,.故答案为:.【点睛】本题考查求向量的模,掌握数量积的定义与运算律是解题基础.本题关键是用数量积的定义把模的运算转化为数量积的运算.12、【解析】
在中,在中,分别由正弦定理求出,,在中,由余弦定理可得解.【详解】由图可得,在中,由正弦定理可得,在中,由正弦定理可得,在中,由余弦定理可得:.故答案为:【点睛】此题考查利用正余弦定理求解三角形,根据已知边角关系建立等式求解,此题求AB的长度可在多个三角形中计算,恰当地选择可以减少计算量.13、【解析】
根据的最小正周期判断即可.【详解】因为的最小正周期均为,故的最小正周期为.故答案为:【点睛】本题主要考查了正切余切函数的周期,属于基础题型.14、【解析】试题分析:由题意得,解得,故答案为.考点:分层抽样.15、【解析】
对极限表达式进行整理,得到,由此作出判断,即可得出参数的值.【详解】因为所以,解得:.故答案为:;【点睛】本题主要考查由极限值求参数的问题,熟记极限运算法则即可,属于常考题型.16、,【解析】
先利用诱导公式化简,即可由正弦函数的单调性求出。【详解】因为,所以的单调增区间是,。【点睛】本题主要考查诱导公式以及正弦函数的性质——单调性的应用。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)的最大值为【解析】试题分析:(1)通过同角三角函数关系将化简,再对函数配方,然后讨论对称轴与区间的位置关系,从而求出的最小值;(2)由,则根据的解析式可知只能在内解方程,从而求出的值,即可求出的最大值.试题解析:(1)若,即,则当时,有最小值,;若,即,则当时,有最小值,若,即,则当时,有最小值,所以;(2)若,由所求的解析式知或由或(舍);由(舍)此时,得,所以时,,此时的最大值为.18、(1);(2).【解析】
(1)利用诱导公式化简可得:原式,再分子、分母同除以可得:原式,将代入计算得解.(2)将整理为:,利用两角差的正弦公式整理得:,根据已知求出、即可得解.【详解】解:(1)原式;(2)因为,,所以.又因为,所以,所以.于是.【点睛】本题主要考查了诱导公式及转化思想,还考查了两角差的正弦公式及同角三角函数基本关系,考查计算能力,属于中档题.19、【解析】
∵,且,∴,则,∴===-.考点:本题考查了三角恒等变换20、解:(Ⅰ)∵是平行四边形直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《大学物理(下册)》课件-第16章
- 融资融券业务操作方法及技巧介绍
- 2025年全球及中国自主机器人街道吸尘器行业头部企业市场占有率及排名调研报告
- 2025年全球及中国商店可视化工具行业头部企业市场占有率及排名调研报告
- 2025年全球及中国数通硅光芯片行业头部企业市场占有率及排名调研报告
- 2025年全球及中国固体葡萄糖浆行业头部企业市场占有率及排名调研报告
- 2025年全球及中国房屋装修和翻新行业头部企业市场占有率及排名调研报告
- 2025年全球及中国立式高温反应釜行业头部企业市场占有率及排名调研报告
- 2025年全球及中国输注穿刺耗材行业头部企业市场占有率及排名调研报告
- 2025年全球及中国微波波导衰减器行业头部企业市场占有率及排名调研报告
- 《中国心力衰竭诊断和治疗指南(2024)》解读完整版
- 《档案管理课件》课件
- 2024年度中国共产主义共青团团课课件版
- 2025年中考物理终极押题猜想(新疆卷)(全解全析)
- 胫骨骨折的护理查房
- 抽水蓄能电站项目建设管理方案
- 电动工具培训课件
- 《智能网联汽车智能传感器测试与装调》电子教案
- 视频会议室改造方案
- 【中考真题】广东省2024年中考语文真题试卷
- GB/T 32399-2024信息技术云计算参考架构
评论
0/150
提交评论