2025届河北省行唐县第三中学数学高一下期末质量检测模拟试题含解析_第1页
2025届河北省行唐县第三中学数学高一下期末质量检测模拟试题含解析_第2页
2025届河北省行唐县第三中学数学高一下期末质量检测模拟试题含解析_第3页
2025届河北省行唐县第三中学数学高一下期末质量检测模拟试题含解析_第4页
2025届河北省行唐县第三中学数学高一下期末质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河北省行唐县第三中学数学高一下期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在区间上随机选取一个数,则满足的概率为()A. B. C. D.2.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布尺,则这位女子织布的天数是()A.2 B.3 C.4 D.13.已知,∥则()A.6 B. C.-6 D.4.若,则下列不等式成立的是()A. B.C. D.5.某学校从编号依次为01,02,…,72的72个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为12,21,则该样本中来自第四组的学生的编号为()A.30 B.31 C.32 D.336.下列函数中最小值为4的是()A. B.C. D.7.直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的最小值为()A.1 B.2 C. D.8.已知空间中两点和的距离为6,则实数的值为()A.1 B.9 C.1或9 D.﹣1或99.有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是A.4 B.5 C.6 D.710.某市举行“精英杯”数学挑战赛,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校所有学生的成绩均在区间内,其频率分布直方图如图所示,该校有130名学生获得了复赛资格,则该校参加初赛的人数约为()A.200 B.400 C.2000 D.4000二、填空题:本大题共6小题,每小题5分,共30分。11.若,且,则的最小值为_______.12.若复数(为虚数单位),则的共轭复数________13.设,,为三条不同的直线,,为两个不同的平面,下列命题中正确的是______.(1)若,,,则;(2)若,,,则;(3)若,,,,则;(4)若,,,则.14.若正实数满足,则的最大值为__________.15.设,,,则,,从小到大排列为______16.函数的值域为_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知公差为正数的等差数列,,且成等比数列.(1)求;(2)若,求数列的前项的和.18.16种食品所含的热量值如下:111123123164430190175236430320250280160150210123(1)求数据的中位数与平均数;(2)用这两种数字特征中的哪一种来描述这个数据集更合适?19.如图,在三棱锥A﹣BCD中,AB=AD,BD⊥CD,点E、F分别是棱BC、BD的中点.(1)求证:EF∥平面ACD;(2)求证:AE⊥BD.20.已知菱形ABCD的边长为2,M为BD上靠近D的三等分点,且线段.(1)求的值;(2)点P为对角线BD上的任意一点,求的最小值.21.已知数列,,,且.(1)设,证明数列是等比数列,并求数列的通项;(2)若,并且数列的前项和为,不等式对任意正整数恒成立,求正整数的最小值.(注:当时,则)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

在区间上,且满足所得区间为,利用区间的长度比,即可求解.【详解】由题意,在区间上,且满足所得区间为,由长度比的几何概型,可得概率为,故选D.【点睛】本题主要考查了长度比的几何概型的概率的计算,其中解答中认真审题,合理利用长度比求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.2、B【解析】

将问题转化为等比数列问题,最终变为求解等比数列基本量的问题.【详解】根据实际问题可以转化为等比数列问题,在等比数列中,公比,前项和为,,,求的值.因为,解得,,解得.故选B.【点睛】本题考查等比数列的实际应用,难度较易.熟悉等比数列中基本量的计算,对于解决实际问题很有帮助.3、A【解析】

根据向量平行(共线),它们的坐标满足的关系式,求出的值.【详解】,且,,解得,故选A.【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.4、B【解析】

利用不等式的性质,进行判断即可.【详解】因为,故由均值不等式可知:;因为,故;因为,故;综上所述:.故选:B.【点睛】本题考查均值不等式及利用不等式性质比较大小.5、A【解析】

根据相邻的两个组的编号确定组矩,即可得解.【详解】由题:样本中相邻的两个组的编号分别为12,21,所以组矩为9,则第一组所取学生的编号为3,第四组所取学生的编号为30.故选:A【点睛】此题考查系统抽样,关键在于根据系统抽样方法确定组矩,依次求得每组选取的编号.6、C【解析】

对于A和D选项不能保证基本不等式中的“正数”要求,对于B选项不能保证基本不等式中的“相等”要求,即可选出答案.【详解】对于A,当时,显然不满足题意,故A错误.对于B,,,.当且仅当,即时,取得最小值.但无解,故B错误.对于D,当时,显然不满足题意,故D错误.对于C,,,.当且仅当,即时,取得最小值,故C正确.故选:C【点睛】本题主要考查基本不等式,熟练掌握基本不等式的步骤为解题的关键,属于中档题.7、B【解析】

求得圆心到直线的距离,减去圆的半径,求得△ABP面积的最小时,三角形的高,由此求得△ABP面积的最小值.【详解】依题意设,故.圆的圆心为,半径为,所以圆上的点到直线的距离的最小值为(其中为圆心到直线的距离),所以△ABP面积的最小值为.故选:B【点睛】本小题主要考查圆上的点到直线的距离的最小值的求法,考查三角形面积的最值的求法,属于基础题.8、C【解析】

利用空间两点间距离公式求出值即可。【详解】由两点之间距离公式,得:,化为:,解得:或9,选C。【点睛】空间两点间距离公式:。代入数据即可,属于基础题目。9、C【解析】

根据相邻正方体的关系得出个正方体的棱长为等比数列,求出塔形表面积的通项公式,令,即可得出的范围.【详解】设从最底层开始的第层的正方体棱长为,则是以2为首项,以为公比的等比数列.∴是以4为首项,以为公比的等比数列∴塔形的表面积为.令,解得.∴塔形正方体最少为6个.故选C.【点睛】此题考查了立体图形的表面积问题以及等比数列求和公式的应用.解决本题的关键是得到上下正方体的棱长之间的关系,从而即可得出依次排列的正方体的一个面的面积,这里还要注意把最下面的正方体看做是6个面之外,上面的正方体都是露出了4个面.10、A【解析】

由频率和为1,可算得成绩大于90分对应的频率,然后由频数÷总数=频率,即可得到本题答案.【详解】由图,得成绩大于90分对应的频率=,设该校参加初赛的人数为x,则,得,所以该校参加初赛的人数约为200.故选:A【点睛】本题主要考查频率直方图的相关计算,涉及到频率和为1以及频数÷总数=频率的应用.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

将变换为,展开利用均值不等式得到答案.【详解】若,且,则时等号成立.故答案为【点睛】本题考查了均值不等式,“1”的代换是解题的关键.12、【解析】

利用复数代数形式的乘除运算化简,再由共轭复数的概念得答案.【详解】由z=i(2﹣i)=1+2i,得.故答案为1﹣2i.【点睛】本题考查复数代数形式的乘除运算,考查共轭复数的基本概念,是基础题.13、(1)【解析】

利用线线平行的传递性、线面垂直的判定定理判定.【详解】(1),,,则,正确(2)若,,,则,错误(3)若,则不成立,错误(4)若,,,则,错误【点睛】本题主要考查线面垂直的判定定理判定,考查了空间想象能力,属于中档题.14、【解析】

可利用基本不等式求的最大值.【详解】因为都是正数,由基本不等式有,所以即,当且仅当时等号成立,故的最大值为.【点睛】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.15、【解析】

首先利用辅助角公式,半角公式,诱导公式分别求出,,的值,然后结合正弦函数的单调性对,,排序即可.【详解】由题知,,,因为正弦函数在上单调递增,所以.故答案为:.【点睛】本题考查了辅助角公式,半角公式,诱导公式,正弦函数的单调区间,属于基础题.16、【解析】

分析函数在区间上的单调性,由此可求出该函数在区间上的值域.【详解】由于函数和函数在区间上均为增函数,所以,函数在区间上也为增函数,且,,当时,,因此,函数的值域为.故答案为:.【点睛】本题考查函数值域的求解,解题的关键就是判断出函数的单调性,考查分析问题和解决问题的能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)直接利用等差数列的性质的应用求出数列的公差,进一步求出数列的通项公式.(2)利用(1)的通项公式,进一步利用错位相减法求出数列的和.【详解】(1)设公差为,由,,成等比数列,得,结合,解得,或(舍去),∴.(2)∴,∴,①,②,由①②可得:∴.【点睛】本题考查的知识要点:数列的通项公式的求法及应用,错位相减法在数列求和中的应用,主要考察学生的运算能力和转换能力,属于基础题型.18、(1)中位数为:,平均数为:;(2)用平均数描述这个数据更合适.【解析】

(1)根据中位数和平均数的定义计算即可;(2)根据平均数和平均数的优缺点进行选择即可.【详解】(1)将数据从小到大排列得:111,123,123,123,150,160,164,175,190,210,236,250,280,320,430,430.所以中位数为:,平均数为:;(2)用平均数描述这个数据更合适,理由如下:平均数反映的是总体的一个情况,中位数只是数列从小到大排列得到的最中间的一个数或两个数,所以平均数更能反映总体的一个整体情况.【点睛】本题考查数据的数字特征的计算及应用,考查基础知识和基本技能,属于常考题.19、(1)证明见解析(2)证明见解析【解析】

(1)证明EF∥CD,然后利用直线与平面平行的判断定理证明EF∥平面ACD;(2)证明BD⊥平面AEF,然后说明AE⊥BD.【详解】(1)因为点E、F分别是棱BC、BD的中点,所以EF是△BCD的中位线,所以EF∥CD,又因为EF⊄平面ACD,CD⊂平面ACD,EF∥平面ACD.(2)由(1)得,EF∥CD,又因为BD⊥CD,所以EF⊥BD,因为AB=AD,点F是棱BD的中点,所以AF⊥BD,又因为EF∩AF=F,所以BD⊥平面AEF,又因为AE⊂平面AEF,所以AE⊥BD.【点睛】本题考查直线与平面垂直的性质以及直线与平面平行的判断定理的应用,考查逻辑推理能力与空间想象能力,是基本知识的考查.20、(1),(2)【解析】

(1)由结合,可求出,从而得到(2)建立直角坐标系,设,可得到,然后利用二次函数的知识求出最小值【详解】(1)如图,四边形ABCD为菱形,所以所以因为,所以可解得,所以所以是等边三角形,故(2)以A为原点,所在直线为x轴建立如图所示坐标系:则有,所以线段:设,则有,所以因为,所以当时取得最小值【点睛】本题考查平面向量数量积及其运算,涉及余弦定理,二次函数等基本知识,属于中档题.21、(1)证明见解析,(2)10【解析】

(1)根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论