2024浙江省公务员考试数量关系专项练习题及解析答案_第1页
2024浙江省公务员考试数量关系专项练习题及解析答案_第2页
2024浙江省公务员考试数量关系专项练习题及解析答案_第3页
2024浙江省公务员考试数量关系专项练习题及解析答案_第4页
2024浙江省公务员考试数量关系专项练习题及解析答案_第5页
已阅读5页,还剩66页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024浙江省公务员考试数量关系专项练习题第一部分单选题(200题)1、a除以5余1,b除以5余4,如果3a>b,那么3a-b除以5余几?()

A、1

B、2

C、3

D、4

【答案】:答案:D

解析:a除以5余1,假设a=6;b除以5余4,假设b=9,符合3a>b。故3a-b=18-9=9,9除以5余4。故选D。2、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,为奇数项是2偶数项为公差为1的等差数列,即所填数字为6+(-1)=5。故选B。3、一人骑车上班需要50分钟,途中骑了一段时间后自行车坏了,只好推车去上班,结果晚到10分钟,如果骑车的速度比步行的速度快一倍,则步行了多少分钟?()

A、20

B、34

C、40

D、50

【答案】:答案:A

解析:设骑车速度为2,步行速度为1,设步行时间为t分钟,由题意可知,50×2=2(50+10-t)+1t,得t=20,即步行了20分钟。故选A。4、某班有56名学生,每人都参加了a、b、c、d、e五个兴趣班中的一个。已知有27人参加a兴趣班,参加b兴趣班的人数第二多,参加c、d兴趣班的人数相同,e兴趣班的参加人数最少,只有6人,问参加b兴趣班的学生有多少个?()

A、7个

B、8个

C、9个

D、10个

【答案】:答案:C

解析:设b班人数为x,c、d班的人数均为y,由b班人数第二多,e班人数最少,可知各班人数关系为:27>x>y>6。该班有56名学生,56=27+x+y+y+6,即x+2y=23,其中2y是偶数,23为奇数,则x为奇数,排除B、D。代入A选项,当x=7时,y=8,则x<Y,不符合题意,排除。故选C。5、要将浓度分别为20%和5%的A、B两种食盐水混合配成浓度为15%的食盐水900克,问5%的食盐水需要多少克?()

A、250

B、285

C、300

D、325

【答案】:答案:C

解析:设需要5%的食盐水x克,则需要20%的食盐水(900-x)克;根据混合后浓度为15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故选C。6、60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少再得多少票就一定当选?()

A、15

B、13

C、10

D、8

【答案】:答案:B

解析:构造最不利,由题意,还剩30名员工没有投票,考虑最不利的情况,乙对甲的威胁最大,先给乙5张选票,甲乙即各有15张选票,其余25张选票中,甲只要在获得13张选票就可以确定当选。故选B。7、130,68,30,(),2

A、11

B、12

C、10

D、9

【答案】:答案:C

解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故选C。8、2.08,8.16,24.32,64.64,()

A、160.28

B、124.28

C、160.56

D、124.56

【答案】:答案:A

解析:小数点之前满足规律:(8-2)×4=24,(24-8)×4=64,(64-24)×4=160,排除B.D两项。小数点之后构成等比数列8,16,32,64,128,小数点之后的数超过三位取后两位,所以未知项是160.28。故选A。9、有苹果若干个,若把其换成桔子,则多换5个;若把其换成菠萝,则少掉7个,已知每个桔子4角9分钱,每个菠萝7角钱,每个苹果的单价是多少?()

A、5角

B、5角8分

C、5角6分

D、5角4分

【答案】:答案:C

解析:此题可理解为:把苹果全部卖掉,得到钱若干,若用这些钱买成同样数量的桔子,则剩下49×5=245分,若用这些钱买成同样数量的菠萝,则缺少70×7=490分,所以苹果个数=(245+490)÷(70-49)=35个,苹果总价=49×35+49×5=1960分,每个苹果单价=1960÷35=56分=5角6分。故选C。10、玉米的正常市场价格为每公斤1.86元到2.18元,近期某地玉米价格涨至每公斤2.68元。经测算,向市场每投放储备玉米100吨,每公斤玉米价格下降0.05元。为稳定玉米价格,向该地投放储备玉米的数量不能超过()。

A、800吨

B、1080吨

C、1360吨

D、1640吨

【答案】:答案:D

解析:要稳定玉米价格,玉米的价格必须调整至正常区间。所以最低下降为每公斤1.86元,即下降了2.68-1.86=0.82(元)。因为每投放100吨,价格下降0.05元,所以投放玉米的数量不能超过0.82÷0.05×100=1640(吨)。故选D。11、133/256,125/64,117/16,()

A、109/4

B、103/2

C、109/6

D、115/8

【答案】:答案:A

解析:分子133、125、117、(109)是公差为-8的等差数列,分母256、64、16、(4)是公比为1/4的等比数列。故选A。12、某木场有甲,乙,丙三位木匠师傅生产桌椅,甲每天能生产12张书桌或13把椅子;乙每天能生产9张书桌或12把椅子,丙每天能生产9张书桌或15把椅子,现在书桌和椅子要配套生产(每套一张书桌一把椅子),则7天内这三位师傅最多可以生产桌椅()套。

A、116

B、129

C、132

D、142

【答案】:答案:B

解析:将甲、乙、丙三位木匠师傅生产桌椅的效率列表如下,分析可知,甲生产书桌的相对效率最高,丙生产椅子的相对效率最高,则安排甲7天全部生产书桌,丙7天全部生产椅子,乙协助甲丙完成。甲7天可生产桌子12×7=84(张),丙7天可生产椅子15×7=105(把)。设乙生产书桌x天,则生产椅子(7-x)天,当生产的书桌数与椅子数相同时,获得套数最多,可列方程84+9x=105+12×(7-x),解得x=5,则乙可生产书桌9×5=45(张)。故7天内这三位师傅最多可以生产桌椅84+45=129(套)。故选B。13、团体操表演中,编号为1~100的学生按顺序排成一列纵队,编号为1的学生拿着红、黄、蓝三种颜色的旗帜,以后每隔2个学生有1人拿红旗,每隔3个学生有1人拿蓝旗,每隔6个学生有1人拿黄旗。问所有学生中有多少人拿两种颜色以上的旗帜?()

A、13

B、14

C、15

D、16

【答案】:答案:B

解析:每隔n个人意为每(n+1)个人,则拿红、蓝、黄旗的周期分别为3、4、7。除编号为1的学生外还剩99人,同时拿红、蓝旗的编号为12(3和4的公倍数)的倍数,99÷12=8.25,有8人;同理,同时拿红、黄旗的编号为21(3和7的公倍数)的倍数,99÷21=4.7,有4人;同时拿蓝、黄旗的编号为28(4和7的公倍数)的倍数,99÷28=3.5,有3人;同时拿红蓝黄旗的编号为84(3、4和7的公倍数)的倍数,99÷84=1.1,有1人。拿两种颜色以上的旗帜共有8+4+3+1-2×1=14(人)。故选B。14、1,1,2,6,24,()

A、11

B、50

C、80

D、120

【答案】:答案:D

解析:依次将相邻两个数中后一个数除以前一个数得1,2,3,4,为连续自然数列,即所填数字为24×5=120。故选D。15、21,27,40,61,94,148,()

A、239

B、242

C、246

D、252

【答案】:答案:A

解析:依次将相邻两项作差得6,13,21,33,54;二次作差得7,8,12,21;再次作差得12,22,32,是连续自然数的平方。即所填数字为42+21+54+148=239。故选A。16、8,10,14,18,()

A、24

B、32

C、26

D、20

【答案】:答案:C

解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故选C。17、学校举行运动会,要求按照红、黄、绿、紫的颜色插彩旗于校门口,请问第58面旗是什么颜色?()

A、黄

B、红

C、绿

D、紫

【答案】:答案:A

解析:根据“按照红、黄、绿、紫”可知,四个颜色为一个周期,则58÷4=14...2,故第58面旗是14个周期后的第二面,即为黄色。故选A。18、-1,1,7,25,79,()

A、121

B、241

C、243

D、254

【答案】:答案:B

解析:相邻两项之差依次是2,6,18,54,(162),这是一个公比为3的等比数列,79+162=(241)。故选B。19、-7,0,1,2,9,()

A、42

B、18

C、24

D、28

【答案】:答案:D

解析:-7=(-2)3+1;0=(-1)3+1;1=03+1;2=13+1;9=23+1;28=33+1。故选D。20、1/5,1/3,3/7,1/2,()

A、5/9

B、1/6

C、6

D、3/5

【答案】:答案:A

解析:1/3写成2/6,1/2写成4/8,分子分母均是公差为1的等差数列。故选A。21、-1,6,25,62,()

A、123

B、87

C、150

D、109

【答案】:答案:A

解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故选A。22、-3,-2,1,6,()

A、8

B、11

C、13

D、15

【答案】:答案:C

解析:相邻两项之差依次为1,3,5,(7),应填入13。故选C。23、某木场有甲,乙,丙三位木匠师傅生产桌椅,甲每天能生产12张书桌或13把椅子;乙每天能生产9张书桌或12把椅子,丙每天能生产9张书桌或15把椅子,现在书桌和椅子要配套生产(每套一张书桌一把椅子),则7天内这三位师傅最多可以生产桌椅()套。

A、116

B、129

C、132

D、142

【答案】:答案:B

解析:将甲、乙、丙三位木匠师傅生产桌椅的效率列表如下,分析可知,甲生产书桌的相对效率最高,丙生产椅子的相对效率最高,则安排甲7天全部生产书桌,丙7天全部生产椅子,乙协助甲丙完成。甲7天可生产桌子12×7=84(张),丙7天可生产椅子15×7=105(把)。设乙生产书桌x天,则生产椅子(7-x)天,当生产的书桌数与椅子数相同时,获得套数最多,可列方程84+9x=105+12×(7-x),解得x=5,则乙可生产书桌9×5=45(张)。故7天内这三位师傅最多可以生产桌椅84+45=129(套)。故选B。24、1,6,5,7,2,8,6,9,()

A、1

B、2

C、3

D、4

【答案】:答案:C

解析:本题为隔项递推数列,存在关系:第三项=第二项-第一项,第五项=第四项-第三项,……因此未知项为9-6=3。故选C。25、44,52,59,73,83,94,()

A、107

B、101

C、105

D、113

【答案】:答案:A

解析:每相邻的两项作差,得到8,7,14,10,11,每一个差是原数列中前一项个位数与十位数字的和,即8=4+4,7=5+2,14=5+9,10=7+3,11=8+3,所以9+4=13,所以未知项为13+94=107。故选A。26、某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取;超过5吨不超过10吨的部分按6元/吨收取;超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?()

A、17.25

B、21

C、21.33

D、24

【答案】:答案:B

解析:总费用一定,要使两个月的用水总量最多,需尽量使用低价水。先将两个月4元/吨的额度用完,花费4×5×2=40(元);再将6元/吨的额度用完,花费6×5×2=60(元)。由两个月共交水费108元可知,还剩108-40-60=8(元),可购买1吨单价为8元/吨的水。该户居民这两个月用水总量最多为5×2+5×2+1=21(吨)。故选B。27、某快速反应部队运送救灾物资到灾区。飞机原计划每分钟飞行12千米,由于灾情危急,飞行速度提高到每分钟15千米,结果比原计划提前30分钟到达灾区,则机场到灾区的距离是多少千米?()

A、1600

B、1800

C、2050

D、2250

【答案】:答案:B

解析:设机场到灾区的距离为x,由每分钟飞行12千米可知,原飞行时间为;由每分钟15千米可知,现飞行时间为。根据比原计划提前30分钟,可得,解得x=1800(千米)。故选B。28、5,7,9,(),15,19

A、11

B、12

C、13

D、14

【答案】:答案:C

解析:5=2+3,7=2+5,9=2+7,15=2+13,19=2+17,每一项是一个连续质数数列与2的和,即所填数字为11+2=13。故选C。29、设袋中装有标着数字为1,2,…,8等8个签,并规定标有数字1,4,7的为中奖号。甲、乙、丙、丁

4人依次从袋中随机抽取一个签、已知丙中奖了、则乙不中奖的概率为多少?()

A、5/8

B、3/7

C、3/8

D、5/7

【答案】:答案:D

解析:已知丙中奖,则剩余7个签,还有2个是中奖号,可得乙不中奖概率为。故选D。30、如果现在是18点整,那么分针旋转1990圈之后是几点钟?()

A、16

B、17

C、18

D、19

【答案】:答案:A

解析:分针旋转1圈为一小时,所以分针旋转12圈,时针旋转1圈,仍为18点整。由“1990÷12=165余10”可知,此时时钟表示的时间应是16点整。故选A。31、2,2,6,14,34,()

A、82

B、50

C、48

D、62

【答案】:答案:A

解析:2+2×2=6;2+6×2=14;6+14×2=34;14+34×2=82。故选A。32、某人租下一店面准备卖服装,房租每月1万元,重新装修花费10万元。从租下店面到开始营业花费3个月时间。开始营业后第一个月,扣除所有费用后的纯利润为3万元。如每月纯利润都比上月增加2000元而成本不变,问该店在租下店面后第几个月内收回投资?()

A、7

B、8

C、9

D、10

【答案】:答案:A

解析:由题意可得租下店面前3个月成本为1×3+10=13(万元),租下店面第4个月开始营业,营业后各月获得的纯利润构成首项为3万元、公差为0.2万元的等差数列:3万元、3.2万元、3.4万元、3.6万元。由3+3.2+3.4+3.6=13.2>13,即第7个月收回投资。故选A。33、一次数学考试共有20道题,规定:答对一题得2分,答错一题扣1分,未答的题不计分。考试结束后,小明共得23分,他想知道自己做错了几道题,但只记得未答的题的数目是一个偶数。请你帮助小明计算一下,他答错了多少道题?()

A、3

B、4

C、5

D、6

【答案】:答案:A

解析:设答对x道,答错y道,未答z道,根据共有20道题,可得x+y+z=20;由共得23分,可得2x-y=23,由于2x为偶数,23为奇数,故y为奇数,排除B、D。代入A选项,可得2x-3=23,解得x=13,此时z=4,符合未答题目数是偶数。故选A。34、9,20,42,86,(),350

A、172

B、174

C、180

D、182

【答案】:答案:B

解析:20=9×2+2,42=20×2+2,86=42×2+2,第一项×2+2=第二项,即所填数字为86×2+2=174。故选B。35、2,12,40,112,()

A、224

B、232

C、288

D、296

【答案】:答案:C

解析:原数列可以写成1×2,3×4,5×8,7×16,前一个乘数数列为1,3,5,7,是等差数列,下一项是9,后一个乘数数列为2,4,8,16,是等比数列,下一项是32,所以原数列空缺项为9×32=288。故选C。36、学校举行象棋比赛,共有甲、乙、丙、丁4支队。规定每支队都要和另外3支队各比赛一场,胜得3分,败得0分,平双方各得1分。已知:(1)这4支队三场比赛的总得分为4个连续的奇数;(2)乙队总得分排在第一;(3)丁队恰有两场同对方打成平局,其中有一场是与丙队打成平局的。问丙队得几分?()

A、1分

B、3分

C、5分

D、7分

【答案】:答案:A

解析:每支队均比赛3场,因此最高分不超过9分,又知总得分为4个连续的奇数,因此得分有3、5、7、9和1、3、5、7两种情况。若最高分为9分,那么排名第二的队最多赢现场得6分,不可能得7分,不符合题意,故乙队得7分,即2胜1平。由条件(3)知,丁队恰有两场同对方打成平局,积分2分,为偶数,故另一场只能为胜,共得5分。由此可知,丙队得分为1或3分。由于丁队一场未败,故乙队获胜的两场只能是甲队和丙队。目前已知丙队战两场,一负一平,积1分,另一场无论是胜或平,积分均为偶数,故这一场只能为负,总积分为1分。故选A。37、[(9,6)42(7,7)][(7,3)40(6,4)][(8,2)()(3,2)]

A、30

B、32

C、34

D、36

【答案】:答案:A

解析:(9-6)×(7+7)=42,(7-3)×(6+4)=40,(8-2)×(3+2)=(30)。故选A。38、5,10,20,(),80

A、30

B、40

C、50

D、60

【答案】:答案:B

解析:公比为2的等比数列。故选B。39、2,6,18,54,()

A、186

B、162

C、194

D、196

【答案】:答案:B

解析:该数列是以3为公比的等比数列,故空缺项为:54×3=162。故选B。40、现有5盒动画卡片,各盒卡片张数分别为:7、9、11、14、17。卡片按图案分为米老鼠、葫芦娃、喜羊羊和灰太狼4种,每个盒内装的是同图案的卡片。已知米老鼠的卡片只有一盒,而喜羊羊、灰太狼图案的卡片数之和比葫芦娃图案的多1倍。据此可知,图案为米老鼠的卡片张数为()。

A、7

B、9

C、14

D、17

【答案】:答案:A

解析:(喜洋洋+灰太狼):葫芦娃=2:1,喜洋洋+灰太狼+葫芦娃是3的倍数;总张数=7+9+11+14+17=58张,58除以3余1,可得米老鼠的卡片只能是7张。故选A。41、某饮料店有纯果汁(即浓度为100%)10千克,浓度为30%的浓缩还原果汁20千克。若取纯果汁、浓缩还原果汁各10千克倒入10千克纯净水中,再倒入10千克的浓缩还原果汁,则得到的果汁浓度为多少。()

A、40%

B、37.5%

C、35%

D、30%

【答案】:答案:A

解析:根据题干可得,一共倒入纯果汁(即浓度为100%)10千克,纯净水10千克,浓度为30%的浓缩还原果汁20千克。可知最终溶液的量为10+10+20=40(千克),最终溶质为10+20×30%=16(千克)。则最终果汁浓度=16÷40×100%=40%。故选A。42、7,7,9,17,43,()

A、119

B、117

C、123

D、121

【答案】:答案:C

解析:依次将相邻两项做差得0,2,10,26,再次做差得2,6,18。构成一个公比为3的等比数列,即所填数字为43+26+18×3=123。故选C。43、102,314,526,()

A、624

B、738

C、809

D、849

【答案】:答案:B

解析:314-102=212,526-314=212。后一项-前一项=212,即所填数字为536+212=738。故选B。44、1,2,9,64,()

A、250

B、425

C、625

D、650

【答案】:答案:C

解析:10,21,32,43,(54)=625。故选C。45、某饮料店有纯果汁(即浓度为100%)10千克,浓度为30%的浓缩还原果汁20千克。若取纯果汁、浓缩还原果汁各10千克倒入10千克纯净水中,再倒入10千克的浓缩还原果汁,则得到的果汁浓度为多少。()

A、40%

B、37.5%

C、35%

D、30%

【答案】:答案:A

解析:根据题干可得,一共倒入纯果汁(即浓度为100%)10千克,纯净水10千克,浓度为30%的浓缩还原果汁20千克。可知最终溶液的量为10+10+20=40(千克),最终溶质为10+20×30%=16(千克)。则最终果汁浓度=16÷40×100%=40%。故选A。46、2,17,29,38,44,()

A、45

B、46

C、47

D、48

【答案】:答案:C

解析:做差。第一次做差结果为15,12,9,6,所以后面一项为3,后面一项为47。故选C。47、-56,25,-2,7,4,()

A、3

B、-12

C、-24

D、5

【答案】:答案:D

解析:-56-25=-3×[25-(-2)],25-(-2)=-3×(-2-7),-2-7=-3×(7-4),第(N-1)项-第N项=-3[第N项-第(N+1)项](N≥2),即所填数字为4-=5。故选D。48、从A地到B地为上坡路。自行车选手从A地出发按A-B-A-B的路线行进,全程平均速度为从B地出发,按B-A-B-A的路线行进的全程平均速度的4/5,如自行车选手在上坡路与下坡路上分别以固定速度匀速骑行,问他上坡的速度是下坡速度的()。

A、1/2

B、1/3

C、2/3

D、3/5

【答案】:答案:A

解析:S=VT,当S一定的时候,VT成反比,两次行程的平均速度之比是4:5,故两次行程所用时间之比T1:T2=5:4。设一个下坡的时间是1,一个上坡的时间是n,则上坡速度是下坡速度的1/n。A-B-A-B的过程经历了2个上坡和1个下坡,则T1=2n+1;B-A-B-A的过程经历了2个下坡和1个上坡,则T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故选A。49、四人年龄为相邻的自然数列且最年长者不超过30岁,四人年龄之乘积能被2700整除且不能被81整除。则四人中最年长者多少岁?()

A、30

B、29

C、28

D、27

【答案】:答案:C

解析:结合最年长者,优先从选项最大值代入:A选项:30×29×28×27,尾数只有一个0,不能被2700整除,排除;B选项:29×28×27×26,尾数不为0,不能被2700整除,排除;C选项:28×27×26×25=(4×7)×27×26×25,能被2700整除,不能被81整除,正确。故选C。50、从A地到B地为上坡路。自行车选手从A地出发按A-B-A-B的路线行进,全程平均速度为从B地出发,按B-A-B-A的路线行进的全程平均速度的4/5,如自行车选手在上坡路与下坡路上分别以固定速度匀速骑行,问他上坡的速度是下坡速度的()。

A、1/2

B、1/3

C、2/3

D、3/5

【答案】:答案:A

解析:S=VT,当S一定的时候,VT成反比,两次行程的平均速度之比是4:5,故两次行程所用时间之比T1:T2=5:4。设一个下坡的时间是1,一个上坡的时间是n,则上坡速度是下坡速度的1/n。A-B-A-B的过程经历了2个上坡和1个下坡,则T1=2n+1;B-A-B-A的过程经历了2个下坡和1个上坡,则T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故选A。51、2,4,10,18,28,(),56

A、32

B、42

C、52

D、54

【答案】:答案:B

解析:因式分解数列。2=1×2,4=1×4,10=2×5,18=3×6,28=4×7,()=?×?,56=7×8,每一项的两个因子之和分别为3、5、7、9、11、()、15,构成公差为2的等差数列。由此可知,空缺项的两个因子的和为13,结合选项,只有B项的42=6×7分解后两个因子的和为13。故选B。52、0,4,18,(),100

A、48

B、58

C、50

D、38

【答案】:答案:A

解析:思路一:0、4、18、48、100=>作差=>4、14、30、52=>作差=>10、16、22等差数列。思路二:13-12=0;23-22=4;33-32=18;43-42=48;53-52=100。思路三:0×1=0;1×4=4;2×9=18;3×16=48;4×25=100。思路四:1×0=0;2×2=4;3×6=18;4×12=48;5×20=100可以发现:0,2,6,(12),20依次相差2,4,(6),8。思路五:0=12×0;4=22×1;18=32×2;()=X2×Y;100=52×4所以()=42×3。53、某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取;超过5吨不超过10吨的部分按6元/吨收取;超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?()

A、17.25

B、21

C、21.33

D、24

【答案】:答案:B

解析:总费用一定,要使两个月的用水总量最多,需尽量使用低价水。先将两个月4元/吨的额度用完,花费4×5×2=40(元);再将6元/吨的额度用完,花费6×5×2=60(元)。由两个月共交水费108元可知,还剩108-40-60=8(元),可购买1吨单价为8元/吨的水。该户居民这两个月用水总量最多为5×2+5×2+1=21(吨)。故选B。54、8,16,22,24,()

A、18

B、22

C、26

D、28

【答案】:答案:A

解析:8×2-0=16,16×2-10=22,22×2-20=24,前一项×2-修正项=后一项。即所填数字为24×2-30=18。故选A。55、小孙的口袋里有四颗糖,一颗巧克力味的,一颗苹果味的,两颗牛奶味的。小孙任意从口袋里取出两颗糖,他看了看后说,其中一颗是牛奶味的。问小孙取出的另一颗糖也是牛奶味的可能性(概率)是多少?()

A、1/3

B、1/4

C、1/5

D、1/6

【答案】:答案:C

解析:两颗都是牛奶味的糖只有一种情况,而其中至少一颗是牛奶味的糖共有5种情况:(牛奶味1、苹果味),(牛奶味1、巧克力味),(牛奶味2、苹果味),(牛奶味2、巧克力味),(牛奶味1、牛奶味2)。因此取出的另一颗糖也是牛奶味的概率为1/5。故选C。56、某快速反应部队运送救灾物资到灾区。飞机原计划每分钟飞行12千米,由于灾情危急,飞行速度提高到每分钟15千米,结果比原计划提前30分钟到达灾区,则机场到灾区的距离是多少千米?()

A、1600

B、1800

C、2050

D、2250

【答案】:答案:B

解析:设机场到灾区的距离为x,由每分钟飞行12千米可知,原飞行时间为;由每分钟15千米可知,现飞行时间为。根据比原计划提前30分钟,可得,解得x=1800(千米)。故选B。57、2,7,14,21,294,()

A、28

B、35

C、273

D、315

【答案】:答案:D

解析:21=7+14,14=2×7,294=14×21,为两项相加、相乘交替得到后-项,即所填数字为21+294=315。故选D。58、41,59,32,68,72,()

A、28

B、36

C、40

D、48

【答案】:答案:A

解析:两两分组得到(41,59),(32,68),(72,()),发现组内做和均为100。故选A。59、-1,3,-3,-3,-9,()

A、-9

B、-4

C、-14

D、-45

【答案】:答案:D

解析:题干倍数关系明显,考虑作商。后项除以前项得到新数列:-3、-1、1、3,新数列为公差是2的等差数列,则新数列的下一项应为5,所求项为:-9×5=-45。故选D。60、有4堆木材,都堆成正三角形垛,层数分别为5,6,7,8层,那么共有木材()根。

A、110

B、100

C、120

D、130

【答案】:答案:B

解析:5层木材有1+2+3+4+5=15,6层木材有1+2+3+4+5+6=21,7层木材有1+2+3+4+5+6+7=28,8层木材有1+2+3+4+5+6+7+8=36,所以共有15+21+28+36=100根木材。故选B。61、一条马路的两边各立着10盏电灯,现在为了节省用电,决定每边关掉3盏,但为了安全,道路起点和终点两边的灯必须是亮的,而且任意一边不能连续关掉两盏。问总共有多少种方案?()

A、120

B、320

C、400

D、420

【答案】:答案:C

解析:每一边7盏亮着的灯形成6个空位,把3盏熄灭的灯插进去,则共有=400种方案。故选C。62、一人骑车上班需要50分钟,途中骑了一段时间后自行车坏了,只好推车去上班,结果晚到10分钟,如果骑车的速度比步行的速度快一倍,则步行了多少分钟?()

A、20

B、34

C、40

D、50

【答案】:答案:A

解析:设骑车速度为2,步行速度为1,设步行时间为t分钟,由题意可知,50×2=2(50+10-t)+1t,得t=20,即步行了20分钟。故选A。63、修一条公路,甲工程队单独做需要40天,乙工程队单独做需要24天。现在两队合作,同时从两端开工,在距中点750米处两队相遇。那么这条公路长多少米?()

A、3750

B、3000

C、4000

D、6000

【答案】:答案:D

解析:甲乙效率之比=24:40=3:5,完成的任务量之比3:5、相差2份对应对应750×2=1500米,总任务量8份对应1500×4=6000米。故选D。64、2.1,2.2,4.1,4.4,16.1,()

A、32.4

B、16.4

C、32.16

D、16.16

【答案】:答案:D

解析:偶数项的小数部分和整数部分相同。故选D。65、1,8,9,4,(),1/6

A、3

B、2

C、1

D、1/3

【答案】:答案:C

解析:1=14,8=23,9=32,4=41,1=50,1/6=6(-1)。故选C。66、调研人员在一次市场调查活动中收回了435份调查问卷,其中80%的调查问卷上填写了被调查者的手机号码。那么调研人员至少需要从这些调查表中随机抽出多少份,才能保证一定能找到两个手机号码后两位相同的被调查者?()

A、101

B、175

C、188

D、200

【答案】:答案:C

解析:在435份调查问卷中有435×20%=87份没有写手机号;且手机号码后两位可能出现的情况一共10×10=100种,因此要保证一定能找到两个手机号码后两位相同的被调查者,至少需要抽取87+100+1=188份。故选C。67、5,4,10,8,15,16,(),()

A、20,18

B、18,32

C、20,32

D、18,36

【答案】:答案:C

解析:从题干中给出的数字不难看出,奇数项5,10,15,(20)构成公差为5的等差数列,偶数项4,8,16,(32)构成公比为2的等比数列。故选C。68、2,6,30,210,2310,()

A、30160

B、30030

C、40300

D、32160

【答案】:答案:B

解析:依次将相邻两个数中后一个数除以前一个数得3,5,7,11,为一个质数数列,即所填数字为2310×13=30030。故选B。69、97,95,92,87,()

A、81

B、79

C、74

D、66

【答案】:答案:B

解析:97+(-2)=95,95+(-3)=92,92+(-5)=87,数列中两项之差形成的数列为-2,-3,-5,而(-2)+(-3)=(-5),后一项为前两项之和,下一个数为(-3)+(-5)=(-8),即所填数字为87+(-8)=79。故选B。70、41,59,32,68,72,()

A、28

B、36

C、40

D、48

【答案】:答案:A

解析:两两分组得到(41,59),(32,68),(72,()),发现组内做和均为100。故选A。71、13,14,16,21,(),76

A、23

B、35

C、27

D、22

【答案】:答案:B

解析:相连两项相减:1,2,5,();再减一次:1,3,9,27;()=14;21+14=35。故选B。72、30,42,56,72,()

A、86

B、60

C、90

D、94

【答案】:答案:C

解析:第一次做差之后为12、14、16,是公差为2的等差数列,下一个应为18,原数列下一项为18+72=90。故选C。73、某收藏家有三个古董钟,时针都掉了,只剩下分针,而且都走得较快,每小时分别快2分钟、6分钟及12分钟。如果在中午将这三个钟的分针都调整指向钟面的12点位置,多少小时后这3个钟的分针会指在相同的分钟位置?

A.24

B.26

C.28

D.30

【答案】:答案:D

解析:由题意可得:假设每小时快2分钟、快6分钟、快12分钟的古董钟分别为A钟、B钟、C钟,则B钟与A钟速度差为分钟/小时,已知整个钟盘有60分钟,即经过小时,B钟的分针比A钟的分针恰好多走一圈,且此时两钟分针重合,同理,C钟与A钟速度差为分钟/小时,即经过小时,C钟的分针比A钟的分针恰好多走一圈,此时两钟分针重合,取6和15的最小公倍数30,即经过30小时,B钟的分针比A钟的分针恰好多走2圈,C钟的分针比A钟的分针恰好多走5圈,且此时三个分针处于同一个位置。故正确答案为D。74、-1,3,-3,-3,-9,()

A、-9

B、-4

C、-14

D、-45

【答案】:答案:D

解析:题干倍数关系明显,考虑作商。后项除以前项得到新数列:-3、-1、1、3,新数列为公差是2的等差数列,则新数列的下一项应为5,所求项为:-9×5=-45。故选D。75、8,4,8,10,14,()

A、22

B、20

C、19

D、24

【答案】:答案:C

解析:题干数列为递推数列,规律为:8÷2+4=8,4÷2+8=10,8÷2+10=14,即第一项÷2+第二项=第三项,因此未知项为10÷2+14=19。故选C。76、有一只青蛙在井底,每天上爬10米,又下滑6米,这口井深20米,这只青蛙爬出井口至少需要多少天?()

A、2

B、3

C、4

D、5

【答案】:答案:C

解析:第一天青蛙爬了10-6=4米,距离井口20-4=16米;第二天爬了4+(10-6)=8米,距离井口20-8=12米;第三天爬了8+(10-6)=12米,距离井口20-12=8米<10米;第四天青蛙可以直接爬出井口。这只青蛙爬出井口至少要4天。故选C。77、41,59,32,68,72,()

A、28

B、36

C、40

D、48

【答案】:答案:A

解析:两两分组得到(41,59),(32,68),(72,()),发现组内做和均为100。故选A。78、8,6,-4,-54,()

A、-118

B、-192

C、-320

D、-304

【答案】:答案:D

解析:依次将相邻两个数中后一个数减去前一个数得-2,-10,-50,构成公比为5的等比数列,即所填数字为-54+(-250)=-304。故选D。79、5,10,20,(),80

A、30

B、40

C、50

D、60

【答案】:答案:B

解析:公比为2的等比数列。故选B。80、有一支参加阅兵的队伍正在进行训练,这支队伍的人数是5的倍数且不少于1000人,如果按每横排4人编队,最后少3人,如果按每横排3人编队,最后少2人;如果按每横排2人编队,最后少1人。请问,这支队伍最少有多少人?()

A、1045

B、1125

C、1235

D、1345

【答案】:答案:A

解析:问最少,由小到大代入选项:代入A选项,(1045+3)能被4整除;(1045+2)能被3整除;(1045+1)能被2整除,满足题意。故选A。81、某楼盘的地下停车位,第一次开盘时平均价格为15万元/个;第二次开盘时,车位的销售量增加了一倍、销售额增加了60%。那么,第二次开盘的车位平均价格为()。

A、10万元/个

B、11万元/个

C、12万元/个

D、13万元/个

【答案】:答案:C

解析:销售额=平均价格×销售量,已知第一次开盘平均价格为15万元/个,赋销售量为1,则销售额为15万。第二次开盘时,销售量增加了一倍,即为2,销售额增加了60%,得销售额为15×(1+60%)=24(万元),故第二次开盘平均价格为24÷2=12(万元/个)。故选C。82、6,6,12,36,()

A、124

B、140

C、144

D、164

【答案】:答案:C

解析:两两相除。6/6=1,6/12=1/2,12/36=1/3,下个数为36/()=1/4。故选C。83、12,23,35,47,511,()

A、613

B、612

C、611

D、610

【答案】:答案:A

解析:数位数列,各项首位数字“1,2,3,4,5,(6)”构成等差数列,其余数字“2,3,5,7,11,(13)”构成质数数列。因此,未知项为613。故选A。84、1,1,3,7,17,41,()

A、89

B、99

C、109

D、119

【答案】:答案:B

解析:第三项=第二项×2+第一项,99=41×2+17。故选B。85、钢铁厂某年总产量的1/6为型钢类,1/7为钢板类,钢管类的产量正好是型钢和钢板产量之差的14倍,而钢丝的产量正好是钢管和型钢产量之和的一半,而其它产品共为3万吨。问该钢铁厂当年的产量为多少万吨?()

A、48

B、42

C、36

D、28

【答案】:答案:D

解析:假设总产量为,则型钢类产量为,钢板类产量为,钢管类为,钢丝的产量为,则,解得万吨,则总产量万吨。故正确答案为D。86、A、B、C三个试管中各盛有10克、20克、30克水,把某种浓度的盐水10克倒入A中,充分混合后从A中取出10克倒入B中,再充分混合后从B中取出10克倒入C中,最后得到C中盐水的浓度为0.5%。则开始倒入试管A中的盐水浓度是多少?()

A、12%

B、15%

C、18%

D、20%

【答案】:答案:A

解析:C中含盐量为(30+10)×0.5%=0.2克,即从B中取出的10克中含盐0.2克,则B的浓度为0.2÷10=2%,进而求出B中含盐量为(20+10)×2%=0.6克,即从A中取出的10克中含盐0.6克,可得A的浓度为0.6÷10=6%,进一步得出A中含盐量为(10+10)×6%=1.2克,故开始倒入A中的盐水浓度为1.2÷10=12%。故选A。87、1,1,3,7,17,41,()

A、89

B、99

C、109

D、119

【答案】:答案:B

解析:第三项=第二项×2+第一项,99=41×2+17。故选B。88、25与一个三位数相乘个位是0,与这个三位数相加有且只有一次进位,像这样的三位数总共有多少个? ()

A、48

B、126

C、174

D、180

【答案】:答案:C

解析:因为25与一个三位数相乘个位是0,所以这个三位数个位上的数是0、2、4、6、8。又因为与这个三位数相加有且只有一次进位,所以当个位是0、2、4时,十位必须是8或9,百位是1-8八个数都可以,这种情况有48(8乘2乘3等于48)个数满足条件;当个位是6或8时,十位可以是0、1、2、3、4、5、6七个数,百位是1-9九个数,这种情况有126(9乘7乘2等于126)个数满足条件;终上所述一共有174(48+126=174)个,即:像这样的三位数总共有174个。故选C。89、102,314,526,()

A、624

B、738

C、809

D、849

【答案】:答案:B

解析:314-102=212,526-314=212。后一项-前一项=212,即所填数字为536+212=738。故选B。90、2,3,8,27,32,(),128

A、64

B、243

C、275

D、48

【答案】:答案:B

解析:间隔组合数列。奇数项是公比为4的等比数列,偶数项是公比为9的等比数列,所求项为27×9=(243)。故选B。91、2,6,18,54,()

A、186

B、162

C、194

D、196

【答案】:答案:B

解析:该数列是以3为公比的等比数列,故空缺项为:54×3=162。故选B。92、1,6,5,7,2,8,6,9,()

A、1

B、2

C、3

D、4

【答案】:答案:C

解析:本题为隔项递推数列,存在关系:第三项=第二项-第一项,第五项=第四项-第三项,……因此未知项为9-6=3。故选C。93、23,29,31,37,()

A、41

B、40

C、43

D、45

【答案】:答案:A

解析:23,29,31,37为连续的质数列23,29,31,37,即所填数字为41。故选A。94、-24,3,30,219,()

A、289

B、346

C、628

D、732

【答案】:答案:D

解析:-24=(-3)3+3,3=03+3,30=33+3,219=63+3,即所填数字为93+3=732。故选D。95、大年三十彩灯悬,彩灯齐明光灿灿,三三数时能数尽,五五数时剩一盏,七七数时刚刚好,八八数时还缺三,请你自己算一算,彩灯至少有多少盏?()

A、21

B、27

C、36

D、42

【答案】:答案:A

解析:由三三数时能数尽、七七数时刚刚好可知,彩灯的数量能同时被3和7整除,排除B、C。又由五五数时剩一盏可知,彩灯的数量除以5余1,排除D。故选A。96、一件商品相继两次分别按折扣率为10%和20%进行折扣,已知折扣后的售价为540元,那么折扣前的售价为()。

A、600元

B、680元

C、720元

D、750元

【答案】:答案:D

解析:设原售价为x元,利用“折扣后售价为540元”得x(1-10%)(1-20%)=540。解得x=750。故选D。97、1,2,0,3,-1,4,()

A、-2

B、0

C、5

D、6

【答案】:答案:A

解析:奇数项1、0、-1、(-2)是公差为-1的等差数列;偶数项2、3、4是连续自然数。故选A。98、2,3,6,18,108,()

A、1944

B、1620

C、1296

D、1728

【答案】:答案:A

解析:2×3=6,3×6=18,6×18=108,……前两项相乘等于下一项,则所求项为18×108,尾数为4。故选A。99、1,2,3,6,12,24,()

A、48

B、45

C、36

D、32

【答案】:答案:A

解析:1+2=3,1+2+3=6,1+2+3+6=12,1+2+3+6+12=24,第N项=第N-1项+…+第一项,即所填数字为1+2+3+6+12+24=48。故选A。100、7,7,9,17,43,()

A、119

B、117

C、123

D、121

【答案】:答案:C

解析:依次将相邻两项做差得0,2,10,26,再次做差得2,6,18。构成一个公比为3的等比数列,即所填数字为43+26+18×3=123。故选C。101、0,1,3,10,()

A、101

B、102

C、103

D、104

【答案】:答案:B

解析:思路一:0×0+1=1,1×1+2=3,3×3+1=10,10×10+2=102。思路二:0(第一项)2+1=1(第二项)12+2=332+1=10102+2=102,其中所加的数呈1,2,1,2规律。思路三:各项除以3,取余数=>0,1,0,1,0,奇数项都能被3整除,偶数项除3余1。故选B。102、两个人带着宠物狗玩游戏,两人相距200米,并以相同速度1米/秒相向而行,与此同时,宠物狗以3米/秒的速度,在两人之间折返跑,当两人相距60米时,那么宠物狗总共跑的距离为?()

A、270米

B、240米

C、210米

D、300米

【答案】:答案:C

解析:根据狗与两人同时出发可知,狗与两人的运动时间相同。两人从相距200米,相向运动至60米,共行驶200-60=140(米),设两人运动时间为t,有140=(1+1)×t,解得t=70秒。则狗总共跑的距离为3×70=210(米)。故选C。103、钟表有一个时针和一个分针,分针每一小时转360度,时针每12小时转360度,则24小时内时针和分针成直角共多少次:

A.28

B.36

C.44

D.48

【答案】:答案:C

解析:一般情况,1小时内会出现2次垂直情况,但是3点、9点、15点、21点这4个特殊时间,只有1次垂直,所以有。故正确答案为C。104、有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、两种或三种。至少有多少名学生订阅的杂志种类相同?()

A、13

B、14

C、15

D、16

【答案】:答案:C

解析:此题“订阅杂志种类”就是分组的依据。订阅一种杂志有3种情况,订阅两种杂志有3种情况,订阅三种杂志有1种情况。因此,总共有7种情况,故至少有14+1=15名学生订阅的杂志种类相同。故选C。105、140支社区足球队参加全市社区足球淘汰赛,每一轮都要在未失败过的球队中抽签决定比赛对手,如上一轮未失败过的球队是奇数,则有一队不用比赛直接进人下—轮。问夺冠的球队至少要参加几场比赛? ()

A、3

B、4

C、5

D、6

【答案】:答案:B

解析:根据题意,如果是奇数队的话,有一队轮空,自动进入下一场。题目问冠军至少需要参加几场比赛,为了让冠军参加的场次尽可能的少,每次轮空自动进入下一场的都是冠军。整个比赛过程为:140-70-35-18-9-5-3-2-1,需要进行8轮,有4轮是轮空的。所以冠军至少需要进行4场比赛。故选B。106、-1,3,-3,-3,-9,()

A、-9

B、-4

C、-14

D、-45

【答案】:答案:D

解析:题干倍数关系明显,考虑作商。后项除以前项得到新数列:-3、-1、1、3,新数列为公差是2的等差数列,则新数列的下一项应为5,所求项为:-9×5=-45。故选D。107、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,为奇数项是2偶数项为公差为1的等差数列,即所填数字为6+(-1)=5。故选B。108、在某城市中,有60%的家庭订阅某种日报,有85%的家庭有电视机。假定这两个事件是独立的,今随机抽出一个家庭,所抽家庭既订阅该种日报又有电视机的概率是()。

A、0.09

B、0.25

C、0.36

D、0.51

【答案】:答案:D

解析:由于是独立重复试验,故既订阅该中日报又有电视机的概率是60%×85%=51%。故选D。109、某出版社新招了10名英文、法文和日文方向的外文编辑,其中既会英文又会日文的小李是唯一掌握一种以上外语的人。在这10人中,会法文的比会英文的多4人,是会日文人数的两倍。问只会英文的有几人?()

A、2

B、0

C、3

D、1

【答案】:答案:D

解析:设会日文的有x人,则会法文的有2x人,会英文的有(2x-4)人,由于小李既会英文也会日文,被统计两次,故10人统计了11人次。根据人次总数,得方程11=x+2x+2x-4,解得x=3,则会英文的人为2x-4=2(人),因小李既会英文又会日文,所以只会英文的只有2-1=1(人),故选D。110、4,8,28,216,()

A、6020

B、2160

C、4200

D、4124

【答案】:答案:A

解析:4×(8-1)=28,8×(28-1)=216,即所填数字为28×(216-1)=6020。故选A。111、4,12,8,10,()

A、6

B、8

C、9

D、24

【答案】:答案:C

解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故选C。112、2,1,2/3,1/2,()

A、3/4

B、1/4

C、2/5

D、5/6

【答案】:答案:C

解析:数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5。故选C。113、6,21,43,72,()

A、84

B、96

C、108

D、112

【答案】:答案:C

解析:依次将相邻两个数中后一个数减去前一个数得15,22,29,构成公差为7的等差数列,即所填数字为72+29+7=108。故选C。114、4,5,7,9,13,15,()

A、17

B、19

C、18

D、20

【答案】:答案:B

解析:各项减2后为质数列,故下一项为17+2=19。故选B。115、甲乙两人需托运行李。托运收费标准为10kg以下6元/kg,超出10kg部分每公斤收费标准略低一些。已知甲乙两人托运费分别为109.5元、78元,甲的行李比乙重了50%。那么,超出10kg部分每公斤收费标准比10kg以内的低了()元。

A.1.5

B.2.5

C.3.5

D.4.5

【答案】:答案:A

解析:解析一:分段计费问题,设乙的行李超出的重量为x,即乙的行李总重量为10+x,则甲的行李重量为1.5×(10+x)。所以计算超出部分的重量为1.5×(10+x)-10=5+1.5x,超出金额为49.5元,所以按照比例,乙的行李超出了重量x,超出金额为18元,得到,解得x=4,所以超出部分单价为18÷4=4.5元。所以超出10公斤部分每公斤收费标准比10公斤以内的低了6-4.5=1.5元。解析二:盈亏思路,由于甲的行李重量比乙的多50%,所以分段看,乙超出部分为18元,所以对应的多50%的重量,应该是27元。则从甲超出的49.5元中扣除27元,还剩22.5元,这个钱数应该对应着10公斤的50%,即5公斤22.5元。所以每公斤超出部分为4.5元,超出10公斤部分每公斤收费标准比10公斤以内的低了6-4.5=1.5,得解。故正确答案为A。速解:靠常识解决,题目中说“超出10公斤部分每公斤收费标准略低一些。”所以选稍微低一点的116、4,5,7,9,13,15,()

A、17

B、19

C、18

D、20

【答案】:答案:B

解析:各项减2后为质数列,故下一项为17+2=19。故选B。117、有一个五位数,左边的三位数比右边的两位数的4倍还多4,如果把右边两位数移到最前面,新的五位数比原来的2倍还多11122,则原来的五位数是()。

A、18044

B、24059

C、27267

D、30074

【答案】:答案:B

解析:多位数问题考虑用代入排除法解题。代入A选项,180=44×4+4,但44180≠18044×2+11122,不符合题意,排除;代入B选项,240=59×4+4,59240=24059×2+11122,符合题意,正确。故选B。118、一人骑车上班需要50分钟,途中骑了一段时间后自行车坏了,只好推车去上班,结果晚到10分钟,如果骑车的速度比步行的速度快一倍,则步行了多少分钟?()

A、20

B、34

C、40

D、50

【答案】:答案:A

解析:设骑车速度为2,步行速度为1,设步行时间为t分钟,由题意可知,50×2=2(50+10-t)+1t,得t=20,即步行了20分钟。故选A。119、8,4,8,10,14,()

A、22

B、20

C、19

D、24

【答案】:答案:C

解析:题干数列为递推数列,规律为:8÷2+4=8,4÷2+8=10,8÷2+10=14,即第一项÷2+第二项=第三项,因此未知项为10÷2+14=19。故选C。120、2,12,40,112,()

A、224

B、232

C、288

D、296

【答案】:答案:C

解析:原数列可以写成1×2,3×4,5×8,7×16,前一个乘数数列为1,3,5,7,是等差数列,下一项是9,后一个乘数数列为2,4,8,16,是等比数列,下一项是32,所以原数列空缺项为9×32=288。故选C。121、假设地球上新生成的资源的增长速度是一定的,照此推算,地球上的资源可供110亿人生活90年,或者可供90亿人生活210年。为了使人类能够不断繁衍,那么地球最多能养活多少亿人?()

A、70

B、75

C、80

D、100

【答案】:答案:B

解析:设地球的原始资源可供x亿人生存一年,每年增长的资源可供y亿人生存一年,即x+90y=90×110,x+210y=210×90,两式联立得y=75,为了使人类能够不断繁衍,那么地球最多能养活75亿人。故选B。122、张大伯卖白菜,开始定价是每千克5角钱,一点都卖不出去,后来每千克降低了几分钱,全部白菜很快卖了出去,一共收入22.26元,则每千克降低了几分钱?

A、3

B、4

C、6

D、8

【答案】:答案:D

解析:代入法,只有降8分时收入才能被价格整除。(2226=2×3×7×53=42×53)。故选D。123、1,6,36,216,()

A、1296

B、1297

C、1299

D、1230

【答案】:答案:A

解析:数列是公比为6的等比数列,则所求项为216×6=1296(也可用尾数法,尾数为6)。故选A。124、0,1,3,10,()

A、101

B、102

C、103

D、104

【答案】:答案:B

解析:思路一:0×0+1=1,1×1+2=3,3×3+1=10,10×10+2=102。思路二:0(第一项)2+1=1(第二项)12+2=332+1=10102+2=102,其中所加的数呈1,2,1,2规律。思路三:各项除以3,取余数=>0,1,0,1,0,奇数项都能被3整除,偶数项除3余1。故选B。125、2,4,12,32,88,()

A、140

B、180

C、220

D、240

【答案】:答案:D

解析:12=2×(2+4),32=2×(4+12),88=2×(32+12),第三项=2×(第一项+第二项),即所填数字为2×(88+32)=240。故选D。126、甲、乙两人在一条400米的环形跑道上从相距200米的位置出发,同向匀速跑步。当甲第三次追上乙的时候,乙跑了2000米。问甲的速度是乙的多少倍?()

A、1.2

B、1.5

C、1.6

D、2.0

【答案】:答案:B

解析:环形同点同向出发每追上一次,甲比乙多跑一圈。第一次由于是不同起点,甲比乙多跑原来的差距200米;之后两次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,时间相同,则速度比与路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故选B。127、从1开始的第2009个奇数是()。

A、4011

B、4013

C、4015

D、4017

【答案】:答案:D

解析:因为每两个相邻的奇数均相差2,而第2009个奇数是第1个奇数1之后的第2008个奇数,那么第2009个奇数应该是1+2008×2=4017。故选D。128、某果品公司计划安排6辆汽车运载A、B、C三种水果共32吨进入某市销售,要求每辆车只装同一种水果且必须装满,根据下表提供的信息,则有()种安排车辆方案。

A、1

B、2

C、3

D、4

【答案】:答案:A

解析:设运送三种水果的车辆数分别为X、Y、Z,根据题意可列式①X+Y+Z=6;②6X+5Y+4Z=32,X、Y、Z为车辆数都为正整数,②中6X和4Z都为偶数,所以Y必然是偶数,且Y≤4,Y=2或4。当Y=4时X=2、Z=0不符合题意,故本题解只有一组X=3、Y=2、Z=1。故选A。129、2.08,8.16,24.32,64.64,()

A、160.28

B、124.28

C、160.56

D、124.56

【答案】:答案:A

解析:小数点之前满足规律:(8-2)×4=24,(24-8)×4=64,(64-24)×4=160,排除B.D两项。小数点之后构成等比数列8,16,32,64,128,小数点之后的数超过三位取后两位,所以未知项是160.28。故选A。130、A、B、C三个试管中各盛有10克、20克、30克水,把某种浓度的盐水10克倒入A中,充分混合后从A中取出10克倒入B中,再充分混合后从B中取出10克倒入C中,最后得到C中盐水的浓度为0.5%。则开始倒入试管A中的盐水浓度是多少?()

A、12%

B、15%

C、18%

D、20%

【答案】:答案:A

解析:C中含盐量为(30+10)×0.5%=0.2克,即从B中取出的10克中含盐0.2克,则B的浓度为0.2÷10=2%,进而求出B中含盐量为(20+10)×2%=0.6克,即从A中取出的10克中含盐0.6克,可得A的浓度为0.6÷10=6%,进一步得出A中含盐量为(10+10)×6%=1.2克,故开始倒入A中的盐水浓度为1.2÷10=12%。故选A。131、一人上楼,边走边数台阶。从一楼走到四楼,共走了54级台阶。如果每层楼之间的台阶数相同,他一直要走到八楼,问他从一楼到八楼一共要走多少级台阶?()

A、126

B、120

C、114

D、108

【答案】:答案:A

解析:从一楼走到四楼,共走了54级台阶,而他实际走了3层楼的高度,所以每层楼的台阶数为54÷3=18级。他从一楼到八楼一共要走7层楼,因此共要走7×18=126级台阶。故选A。132、在某城市中,有60%的家庭订阅某种日报,有85%的家庭有电视机。假定这两个事件是独立的,今随机抽出一个家庭,所抽家庭既订阅该种日报又有电视机的概率是()。

A、0.09

B、0.25

C、0.36

D、0.51

【答案】:答案:D

解析:由于是独立重复试验,故既订阅该中日报又有电视机的概率是60%×85%=51%。故选D。133、1,10,3,5,()

A、4

B、9

C、13

D、15

【答案】:答案:C

解析:把每项变成汉字为一、十、三、五、十三的笔画数1,2,3,4,5等差。故选C。134、119,83,36,47,()

A、-37

B、-11

C、11

D、37

【答案】:答案:B

解析:119=83+36,83=36+47,即所填数字为36-47=-11。故选B。135、从A地到B地为上坡路。自行车选手从A地出发按A-B-A-B的路线行进,全程平均速度为从B地出发,按B-A-B-A的路线行进的全程平均速度的4/5,如自行车选手在上坡路与下坡路上分别以固定速度匀速骑行,问他上坡的速度是下坡速度的()。

A、1/2

B、1/3

C、2/3

D、3/5

【答案】:答案:A

解析:S=VT,当S一定的时候,VT成反比,两次行程的平均速度之比是4:5,故两次行程所用时间之比T1:T2=5:4。设一个下坡的时间是1,一个上坡的时间是n,则上坡速度是下坡速度的1/n。A-B-A-B的过程经历了2个上坡和1个下坡,则T1=2n+1;B-A-B-A的过程经历了2个下坡和1个上坡,则T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故选A。136、过长方体一侧面的两条对角线交点,与下底面四个顶点连得一四棱锥,则四棱锥与长方体的体积比为多少?()

A、1:8

B、1:6

C、1:4

D、1:3

【答案】:答案:B

解析:等底等高时,椎体体积是柱体体积的,而题中椎体的高是长方体高的一半,四棱锥与长方体的体积之比为1:6。故选B。137、某一学校有500人,其中选修数学的有359人,选修文学的有408人,那么两种课程都选的学生至少有多少?()

A、165人

B、203人

C、267人

D、199人

【答案】:答案:C

解析:设至少有x人两种课程都选,则359-x+408-x+x≤500,解得x≥267,则两种课程都选的学生至少有267人。故选C。138、有一个五位数,左边的三位数比右边的两位数的4倍还多4,如果把右边两位数移到最前面,新的五位数比原来的2倍还多11122,则原来的五位数是()。

A、18044

B、24059

C、27267

D、30074

【答案】:答案:B

解析:多位数问题考虑用代入排除法解题。代入A选项,180=44×4+4,但44180≠18044×2+11122,不符合题意,排除;代入B选项,240=59×4+4,59240=24059×2+11122,符合题意,正确。故选B。139、3,30,129,348,()

A、532

B、621

C、656

D、735

【答案】:答案:D

解析:3=13+2、30=33+3、129=53+4、348=73+5,其中底数1、3、5、7构成连续的奇数列,另一部分2、3、4、5是连续的自然数,即所填数字为93+6=735。故选D。140、玉米的正常市场价格为每公斤1.86元到2.18元,近期某地玉米价格涨至每公斤2.68元。经测算,向市场每投放储备玉米100吨,每公斤玉米价格下降0.05元。为稳定玉米价格,向该地投放储备玉米的数量不能超过()。

A、800吨

B、1080吨

C、1360吨

D、1640吨

【答案】:答案:D

解析:要稳定玉米价格,玉米的价格必须调整至正常区间。所以最低下降为每公斤1.86元,即下降了2.68-1.86=0.82(元)。因为每投放100吨,价格下降0.05元,所以投放玉米的数量不能超过0.82÷0.05×100=1640(吨)。故选D。141、2,1,4,6,26,158,()

A、5124

B、5004

C、4110

D、3676

【答案】:答案:C

解析:4=2×1+2,6=1×4+2,26=4×6+2,158=6×26+2,an=an-2×an-1+2,即所填数字是158×26+2=4110。故选C。142、187,259,448,583,754,()

A、847

B、862

C、915

D、944

【答案】:答案:B

解析:各项数字和均为16。故选B。143、从A地到B地为上坡路。自行车选手从A地出发按A-B-A-B的路线行进,全程平均速度为从B地出发,按B-A-B-A的路线行进的全程平均速度的4/5,如自行车选手在上坡路与下坡路上分别以固定速度匀速骑行,问他上坡的速度是下坡速度的()。

A、1/2

B、1/3

C、2/3

D、3/5

【答案】:答案:A

解析:S=VT,当S一定的时候,VT成反比,两次行程的平均速度之比是4:5,故两次行程所用时间之比T1:T2=5:4。设一个下坡的时间是1,一个上坡的时间是n,则上坡速度是下坡速度的1/n。A-B-A-B的过程经历了2个上坡和1个下坡,则T1=2n+1;B-A-B-A的过程经历了2个下坡和1个上坡,则T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故选A。144、2012年3月份的最后一天是星期六,则2013年3月份的最后一天是()。

A、星期天

B、星期四

C、星期五

D、星期六

【答案】:答案:A

解析:从2012年3月31号到2013年3月31号,一共是365天,365÷7=52周…1天,所以星期六加一天即为星期天。故选A。145、4,8,28,216,()

A、6020

B、2160

C、4200

D、4124

【答案】:答案:A

解析:4×(8-1)=28,8×(28-1)=216,即所填数字为28×(216-1)=6020。故选A。146、8,9,18,23,30,()

A、33

B、36

C、41

D、48

【答案】:答案:B

解析:依次将相邻两个数中后一个数减去前一个数得1,9,5,7,再次作差得8,-4,2,构成公比为-0.5的等比数列,即所填数字为2×(-0.5)+7+30=36。故选B。147、甲、乙两位村民去县城A商店买东西,他们同时在村口出发,甲骑车而乙步行,但他们又同时到达A商店。途中甲休息的时间是乙步行时间的5/6,而乙休息的时间是甲骑车时间的1/2,则甲、乙途中休息的时间比是()。

A、4:1

B、5:1

C、5:2

D、6:1

【答案】:答案:B

解析:设乙步行时间为6x,甲骑车时间为2y,则甲休息的时间为5x,乙休息的时间为y,则由“他们同时在村口出发,甲骑车而乙步行,但他们又同时到达A商店”可得:2y+5x=6x+y,解得x:y=1:1。因此,甲、乙途中休息的时间比是5x:y=5:1。故选B。148、7.1,8.6,14.2,16.12,2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论