版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数量关系测试题第一部分单选题(200题)1、0,1,3,10,()
A、101
B、102
C、103
D、104
【答案】:答案:B
解析:思路一:0×0+1=1,1×1+2=3,3×3+1=10,10×10+2=102。思路二:0(第一项)2+1=1(第二项)12+2=332+1=10102+2=102,其中所加的数呈1,2,1,2规律。思路三:各项除以3,取余数=>0,1,0,1,0,奇数项都能被3整除,偶数项除3余1。故选B。2、甲、乙二人现在的年龄之和是一个完全平方数。7年前,他们各自的年龄都是完全平方数。再过多少年,他们的年龄之和又是完全平方数?()
A、20
B、18
C、16
D、9
【答案】:答案:B
解析:设七年前甲、乙的年龄分别为x、y岁,则七年后两人的年龄和为(x+7)+(y+7)=x+y+14,根据题意x、y、x+y+14均为完全平方数。100以内的平方数有1、4、9、16、25、36、49、64、81、100,其中1+49+14=64,1、49、64均为完全平方数,则七年前甲1岁,乙49岁,现在甲为8岁,乙为56岁,年龄和为64,甲乙年龄和为偶数,下一个平方数为偶数的是100,需要再过(100-64)÷2=18年。故选B。3、甲、乙和丙三种不同浓度、不同规格的酒精溶液,每瓶重量分别为3公斤、7公斤和9公斤,如果将甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分别混合,得到的酒精浓度分别为50%,50%和60%。如果将三种酒精合各一瓶混合,得到的酒精中要加入多少公斤纯净水后,其浓度正好是50%?()
A、1
B、1.3
C、1.6
D、1.9
【答案】:答案:C
解析:甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分别混合,相当于两瓶甲、两瓶乙、两瓶丙混合,前两种浓度都是50%,所以只需要加入适量水使得乙丙混合浓度由60%变为50%即可。设加水x,可将浓度为60%的酒精溶液溶度变为50%,即,解得x=3.2(公斤)。此时甲乙,甲丙和乙丙溶液各一瓶混合后浓度必然为50%。若甲、乙和丙各一瓶混合时浓度仍然为50%,则需加水为(公斤)。故选C。4、某商店以5元/斤的价格购入一批蔬菜,上午以8元/斤的价格卖出总进货量的60%,中午以上午售出价的8折卖出总进货量的20%,下午以中午售出价的一半卖出剩余货量的一半,最后获利210元。则该商店一共购入多少斤蔬菜?()
A、140
B、150
C、160
D、180
【答案】:答案:B
解析:赋值购进的量为10斤,上午以8元/斤的价格卖出6斤,中午以6.4元/斤的价格卖出2斤,下午以3.2元/斤的价格卖出1斤,总收入=8×6+6.4×2+3.2×1=64元,总利润=64-5×10=14元,实际购入(210/14)×10=150斤。故选B。5、某商店以5元/斤的价格购入一批蔬菜,上午以8元/斤的价格卖出总进货量的60%,中午以上午售出价的8折卖出总进货量的20%,下午以中午售出价的一半卖出剩余货量的一半,最后获利210元。则该商店一共购入多少斤蔬菜?()
A、140
B、150
C、160
D、180
【答案】:答案:B
解析:赋值购进的量为10斤,上午以8元/斤的价格卖出6斤,中午以6.4元/斤的价格卖出2斤,下午以3.2元/斤的价格卖出1斤,总收入=8×6+6.4×2+3.2×1=64元,总利润=64-5×10=14元,实际购入(210/14)×10=150斤。故选B。6、某快速反应部队运送救灾物资到灾区。飞机原计划每分钟飞行12千米,由于灾情危急,飞行速度提高到每分钟15千米,结果比原计划提前30分钟到达灾区,则机场到灾区的距离是多少千米?()
A、1600
B、1800
C、2050
D、2250
【答案】:答案:B
解析:设机场到灾区的距离为x,由每分钟飞行12千米可知,原飞行时间为;由每分钟15千米可知,现飞行时间为。根据比原计划提前30分钟,可得,解得x=1800(千米)。故选B。7、某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取;超过5吨不超过10吨的部分按6元/吨收取;超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?()
A、17.25
B、21
C、21.33
D、24
【答案】:答案:B
解析:总费用一定,要使两个月的用水总量最多,需尽量使用低价水。先将两个月4元/吨的额度用完,花费4×5×2=40(元);再将6元/吨的额度用完,花费6×5×2=60(元)。由两个月共交水费108元可知,还剩108-40-60=8(元),可购买1吨单价为8元/吨的水。该户居民这两个月用水总量最多为5×2+5×2+1=21(吨)。故选B。8、从A地到B地为上坡路。自行车选手从A地出发按A-B-A-B的路线行进,全程平均速度为从B地出发,按B-A-B-A的路线行进的全程平均速度的4/5,如自行车选手在上坡路与下坡路上分别以固定速度匀速骑行,问他上坡的速度是下坡速度的()。
A、1/2
B、1/3
C、2/3
D、3/5
【答案】:答案:A
解析:S=VT,当S一定的时候,VT成反比,两次行程的平均速度之比是4:5,故两次行程所用时间之比T1:T2=5:4。设一个下坡的时间是1,一个上坡的时间是n,则上坡速度是下坡速度的1/n。A-B-A-B的过程经历了2个上坡和1个下坡,则T1=2n+1;B-A-B-A的过程经历了2个下坡和1个上坡,则T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故选A。9、学校举行象棋比赛,共有甲、乙、丙、丁4支队。规定每支队都要和另外3支队各比赛一场,胜得3分,败得0分,平双方各得1分。已知:(1)这4支队三场比赛的总得分为4个连续的奇数;(2)乙队总得分排在第一;(3)丁队恰有两场同对方打成平局,其中有一场是与丙队打成平局的。问丙队得几分?()
A、1分
B、3分
C、5分
D、7分
【答案】:答案:A
解析:每支队均比赛3场,因此最高分不超过9分,又知总得分为4个连续的奇数,因此得分有3、5、7、9和1、3、5、7两种情况。若最高分为9分,那么排名第二的队最多赢现场得6分,不可能得7分,不符合题意,故乙队得7分,即2胜1平。由条件(3)知,丁队恰有两场同对方打成平局,积分2分,为偶数,故另一场只能为胜,共得5分。由此可知,丙队得分为1或3分。由于丁队一场未败,故乙队获胜的两场只能是甲队和丙队。目前已知丙队战两场,一负一平,积1分,另一场无论是胜或平,积分均为偶数,故这一场只能为负,总积分为1分。故选A。10、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,奇数项是2,偶数项构成公差为1的等差数列,即所填数字为6+(-1)=5。故选B。11、甲种酒精有4升,乙种酒精有6升,混合成的酒精含酒精62%;如果两种酒精溶液一样多,混合成的酒精溶液含酒精61%,乙种酒精溶液含有纯酒精百分之几?()
A、56
B、66
C、58
D、64
【答案】:答案:B
解析:设甲种酒精浓度x%,乙种酒精浓度y%。那么,4×x%+6×y%=(4+6)×62%,x%+y%=2×61%,得x=56,y=66,即乙种酒精浓度为66%。故选B。12、1,3,2,6,11,19,()
A、24
B、36
C、29
D、38
【答案】:答案:B
解析:该数列为和数列,即前三项之和为第四项。故空缺处应为6+11+19=36。故选B。13、84,12,48,30,39,()
A、23
B、36.5
C、34.5
D、43
【答案】:答案:C
解析:依次将相邻两个数中前一个数减去后一个数得72,-36,18,-9,构成公比为-0.5的等比数列,即所填数字为39-4.5=34.5。故选C。14、甲、乙两人在一条400米的环形跑道上从相距200米的位置出发,同向匀速跑步。当甲第三次追上乙的时候,乙跑了2000米。问甲的速度是乙的多少倍?()
A、1.2
B、1.5
C、1.6
D、2.0
【答案】:答案:B
解析:环形同点同向出发每追上一次,甲比乙多跑一圈。第一次由于是不同起点,甲比乙多跑原来的差距200米;之后两次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,时间相同,则速度比与路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故选B。15、21,27,40,61,94,148,()
A、239
B、242
C、246
D、252
【答案】:答案:A
解析:依次将相邻两项作差得6,13,21,33,54;二次作差得7,8,12,21;再次作差得12,22,32,是连续自然数的平方。即所填数字为42+21+54+148=239。故选A。16、10,9,17,50,()
A、100
B、99
C、199
D、200
【答案】:答案:C
解析:10×1-1=9;9×2-1=17;17×3-1=50;50×4-1=199。故选C。17、-1,3,-3,-3,-9,()
A、-9
B、-4
C、-14
D、-45
【答案】:答案:D
解析:题干倍数关系明显,考虑作商。后项除以前项得到新数列:-3、-1、1、3,新数列为公差是2的等差数列,则新数列的下一项应为5,所求项为:-9×5=-45。故选D。18、某年的10月里有5个星期六,4个星期日,则这年的10月1日是?()
A、星期一
B、星期二
C、星期三
D、星期四
【答案】:答案:D
解析:10月有31天,因为有5个星期六,4个星期日,所以10月31日是星期六。31=4×7+3,所以10月3日也是星期六,故10月1日是星期四。故选D。19、2,3,6,15,()
A、25
B、36
C、42
D、64
【答案】:答案:C
解析:相邻两项间做差。做差后得到的数为1,3,9;容易观察出这是一个等比数列,所以做差数列的下一项为27,则答案为15+27=42。故选C。20、25与一个三位数相乘个位是0,与这个三位数相加有且只有一次进位,像这样的三位数总共有多少个? ()
A、48
B、126
C、174
D、180
【答案】:答案:C
解析:因为25与一个三位数相乘个位是0,所以这个三位数个位上的数是0、2、4、6、8。又因为与这个三位数相加有且只有一次进位,所以当个位是0、2、4时,十位必须是8或9,百位是1-8八个数都可以,这种情况有48(8乘2乘3等于48)个数满足条件;当个位是6或8时,十位可以是0、1、2、3、4、5、6七个数,百位是1-9九个数,这种情况有126(9乘7乘2等于126)个数满足条件;终上所述一共有174(48+126=174)个,即:像这样的三位数总共有174个。故选C。21、2,1,4,6,26,158,()
A、5124
B、5004
C、4110
D、3676
【答案】:答案:C
解析:4=2×1+2,6=1×4+2,26=4×6+2,158=6×26+2,an=an-2×an-1+2,即所填数字是158×26+2=4110。故选C。22、某饮料店有纯果汁(即浓度为100%)10千克,浓度为30%的浓缩还原果汁20千克。若取纯果汁、浓缩还原果汁各10千克倒入10千克纯净水中,再倒入10千克的浓缩还原果汁,则得到的果汁浓度为多少。()
A、40%
B、37.5%
C、35%
D、30%
【答案】:答案:A
解析:根据题干可得,一共倒入纯果汁(即浓度为100%)10千克,纯净水10千克,浓度为30%的浓缩还原果汁20千克。可知最终溶液的量为10+10+20=40(千克),最终溶质为10+20×30%=16(千克)。则最终果汁浓度=16÷40×100%=40%。故选A。23、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故选C。24、-3,-2,1,6,()
A、8
B、11
C、13
D、15
【答案】:答案:C
解析:相邻两项之差依次为1,3,5,(7),应填入13。故选C。25、-56,25,-2,7,4,()
A、3
B、-12
C、-24
D、5
【答案】:答案:D
解析:-56-25=-3×[25-(-2)],25-(-2)=-3×(-2-7),-2-7=-3×(7-4),第(N-1)项-第N项=-3[第N项-第(N+1)项](N≥2),即所填数字为4-=5。故选D。26、要将浓度分别为20%和5%的A、B两种食盐水混合配成浓度为15%的食盐水900克,问5%的食盐水需要多少克?()
A、250
B、285
C、300
D、325
【答案】:答案:C
解析:设需要5%的食盐水x克,则需要20%的食盐水(900-x)克;根据混合后浓度为15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故选C。27、12,27,72,(),612
A、108
B、188
C、207
D、256
【答案】:答案:C
解析:(第一项-3)×3=第二项,(72-3)×3=(207),(207-3)×3=612。故选C。28、-2,1,31,70,112,()
A、154
B、155
C、256
D、280
【答案】:答案:B
解析:依次将相邻两项做差得3、30、39、42,再次做差得27、9、3,是公比为1/3的等比数列,即所填数字为(3÷3)+42+112=155。故选B。29、办公室小李发现写字台上的台历很久没有翻了,就一次翻了7张,这些台历的日期数加起来恰好是77,请问这一天是几号?()
A、14
B、15
C、16
D、17
【答案】:答案:B
解析:翻过去的7天的日期是公差为1的等差数列,和是77,根据等差数列求和公式,可知中位数=77÷7=11,7天中位数是第4天即第4天为11号。第七天是11+(7-4)×1=14号,可知今天是15号。故选B。30、12,23,35,47,511,()
A、613
B、612
C、611
D、610
【答案】:答案:A
解析:数位数列,各项首位数字“1,2,3,4,5,(6)”构成等差数列,其余数字“2,3,5,7,11,(13)”构成质数数列。因此,未知项为613。故选A。31、4/5,16/17,16/13,64/37,()
A、64/25
B、64/21
C、35/26
D、75/23
【答案】:答案:A
解析:已知数列可转化为:8/10,16/17,32/26,64/37,(),分子8,16,32,64,()是公比为2的等比数列,分母10,17,26,37,()构成二级等差数列。故第五项的分子应是128,分母是50,约分后为64/25。故选A。32、某一学校有500人,其中选修数学的有359人,选修文学的有408人,那么两种课程都选的学生至少有多少?()
A、165人
B、203人
C、267人
D、199人
【答案】:答案:C
解析:设至少有x人两种课程都选,则359-x+408-x+x≤500,解得x≥267,则两种课程都选的学生至少有267人。故选C。33、-3,-2,5,24,61,()
A、122
B、156
C、240
D、348
【答案】:答案:A
解析:相邻两项逐差:因此,未知项=61+61=122。故选A。34、3,4,10,33,136,()
A、685
B、424
C、314
D、149
【答案】:答案:A
解析:4=(3+1)×1,10=(4+1)×2,33=(10+1)×3,136=(33+1)×4,an=(an-1+1)×(n-1)(n≥2),即所填数字应为(136+1)×5=685。故选A。35、2012年3月份的最后一天是星期六,则2013年3月份的最后一天是()。
A、星期天
B、星期四
C、星期五
D、星期六
【答案】:答案:A
解析:从2012年3月31号到2013年3月31号,一共是365天,365÷7=52周…1天,所以星期六加一天即为星期天。故选A。36、2.08,8.16,24.32,64.64,()
A、160.28
B、124.28
C、160.56
D、124.56
【答案】:答案:A
解析:小数点之前满足规律:(8-2)×4=24,(24-8)×4=64,(64-24)×4=160,排除B.D两项。小数点之后构成等比数列8,16,32,64,128,小数点之后的数超过三位取后两位,所以未知项是160.28。故选A。37、2,6,18,54,()
A、186
B、162
C、194
D、196
【答案】:答案:B
解析:该数列是以3为公比的等比数列,故空缺项为:54×3=162。故选B。38、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,为奇数项是2偶数项为公差为1的等差数列,即所填数字为6+(-1)=5。故选B。39、某杂志为每篇投稿文章安排两位审稿人,若都不同意录用则弃用;若都同意则录用;若两人意见不同,则安排第三位审稿人,并根据其意见录用或弃用,如每位审稿人录用某篇文章的概率都是60%,则该文章最终被录用的概率是()。
A、36%
B、50.4%
C、60%
D、64.8%
【答案】:答案:D
解析:根据题意,该文章最终被录用可分为以下两种情况:(1)前两位审稿人都同意,概率为0.6×0.6=0.36;(2)前两位审稿人只有一人同意且第三位审稿人同意,概率为;故该文章最终被录用的概率为0.36+0.288=0.648=64.8%。故选D。40、某班一次数学测试,全班平均91分,其中男生平均88分,女生平均93分,则女生人数是男生人数的多少倍?()
A、0.5
B、1
C、1.5
D、2
【答案】:答案:C
解析:设男生、女生人数分别为x、y,可得88x+93y=91(x+y),解得,即女生是男生的1.5倍。故选C。41、甲乙两车早上分别同时从A、B两地出发驶向对方所在城市,在分别到达对方城市并各自花费1小时卸货后,立刻出发以原速返回出发地。甲车的速度为60千米/小时,乙车的速度为40千米/小时,两地之间相距480千米。问两车第二次相遇距离两车早上出发经过了多少个小时?()
A、13.4
B、14.4
C、15.4
D、16.4
【答案】:答案:C
解析:根据“分别同时从A.B两地出发”、“两车第二次相遇”,可知考查的是两端出发的多次相遇问题,公式为(v1+v2)t=(2n-1)S。代入数据得(60+40)t=(2×2-1)×480,解得t=14.4,由“各自花费一小时卸货”,故经过了14.4+1=15.4小时。故选C。42、水面上有三艘同向行驶的轮船,其中甲船的时速为63公里,乙、丙两船的时速均为60公里,但由于故障,丙船每连续行驶30分钟后必须停船2分钟。早上10点,三船到达同一位置,问1小时后,甲、丙两船最多相距多少公里?()
A、5
B、7
C、9
D、11
【答案】:答案:B
解析:1小时内,甲船行驶了63公里,丙船最多停车4分钟,即行驶56分钟,行驶路程为56公里。故最多相距7公里。故选B。43、玉米的正常市场价格为每公斤1.86元到2.18元,近期某地玉米价格涨至每公斤2.68元。经测算,向市场每投放储备玉米100吨,每公斤玉米价格下降0.05元。为稳定玉米价格,向该地投放储备玉米的数量不能超过()。
A、800吨
B、1080吨
C、1360吨
D、1640吨
【答案】:答案:D
解析:要稳定玉米价格,玉米的价格必须调整至正常区间。所以最低下降为每公斤1.86元,即下降了2.68-1.86=0.82(元)。因为每投放100吨,价格下降0.05元,所以投放玉米的数量不能超过0.82÷0.05×100=1640(吨)。故选D。44、有苹果若干个,若把其换成桔子,则多换5个;若把其换成菠萝,则少掉7个,已知每个桔子4角9分钱,每个菠萝7角钱,每个苹果的单价是多少?()
A、5角
B、5角8分
C、5角6分
D、5角4分
【答案】:答案:C
解析:此题可理解为:把苹果全部卖掉,得到钱若干,若用这些钱买成同样数量的桔子,则剩下49×5=245分,若用这些钱买成同样数量的菠萝,则缺少70×7=490分,所以苹果个数=(245+490)÷(70-49)=35个,苹果总价=49×35+49×5=1960分,每个苹果单价=1960÷35=56分=5角6分。故选C。45、1,6,5,7,2,8,6,9,()
A、1
B、2
C、3
D、4
【答案】:答案:C
解析:本题为隔项递推数列,存在关系:第三项=第二项-第一项,第五项=第四项-第三项,……因此未知项为9-6=3。故选C。46、钢铁厂某年总产量的1/6为型钢类,1/7为钢板类,钢管类的产量正好是型钢和钢板产量之差的14倍,而钢丝的产量正好是钢管和型钢产量之和的一半,而其它产品共为3万吨。问该钢铁厂当年的产量为多少万吨?()
A、48
B、42
C、36
D、28
【答案】:答案:D
解析:假设总产量为,则型钢类产量为,钢板类产量为,钢管类为,钢丝的产量为,则,解得万吨,则总产量万吨。故正确答案为D。47、-56,25,-2,7,4,()
A、3
B、-12
C、-24
D、5
【答案】:答案:D
解析:-56-25=-3×[25-(-2)],25-(-2)=-3×(-2-7),-2-7=-3×(7-4),第(N-1)项-第N项=-3[第N项-第(N+1)项](N≥2),即所填数字为4-=5。故选D。48、1/5,1/3,3/7,1/2,()
A、5/9
B、1/6
C、6
D、3/5
【答案】:答案:A
解析:1/3写成2/6,1/2写成4/8,分子分母均是公差为1的等差数列。故选A。49、商店购入一百多件A款服装,其单件进价为整数元,总进价为1万元,已知单件B款服装的定价为其进价的1.6倍,其进价为A款服装的75%,销售每件B款服装的利润为A款服装的一半,某日商店以定价销售A款服装的总销售额超过2500元,问当天至少销售了多少件A款服装?()
A、13
B、15
C、17
D、19
【答案】:答案:C
解析:推出A款服装有125件,进价为80元,B款服装进价为80×0.75=60(元),B款服装定价为60×1.6=96(元),利润为96-60=36(元),A款服装利润为36×2=72(元),所以A款服装售价为80+72=152(元)。销售数量至少为2500÷152=16.4,取整为17件。故选C。50、4,8,28,216,()
A、6020
B、2160
C、4200
D、4124
【答案】:答案:A
解析:4×(8-1)=28,8×(28-1)=216,即所填数字为28×(216-1)=6020。故选A。51、1,10,3,5,()
A、4
B、9
C、13
D、15
【答案】:答案:C
解析:把每项变成汉字为一、十、三、五、十三的笔画数1,2,3,4,5等差。故选C。52、2.1,2.2,4.1,4.4,16.1,()
A、32.4
B、16.4
C、32.16
D、16.16
【答案】:答案:D
解析:偶数项的小数部分和整数部分相同。故选D。53、小张购买了2个苹果、3根香蕉、4个面包和5块蛋糕,共消费58元。如果四种商品的单价都是正整数且各不相同,则每块蛋糕的价格最高可能为多少元?()
A、5
B、6
C、7
D、8
【答案】:答案:D
解析:设苹果、香蕉、面包、蛋糕的单价分别为x、y、z、w,根据共消费58元,得2x+3y+4z+5w=58。代入排除,根据最高,优先从值最大的选项代入。D选项,当w=8时,可得2x+3y+4z=18,由2x、4z、18均为偶数,则3y为偶数,即y为偶数且小于6。当y=2,有2x+4z=12,即x+2z=6,均为正整数且各不相同,若z=1,则x=4,此时满足题意。故选D。54、90,85,81,78,()
A、75
B、74
C、76
D、73
【答案】:答案:C
解析:后项减去前项,可得-5、-4、-3、(-2),这是一个公差为1的等差数列,所以下一项为78-2=76。故选C。55、一个四边形广场,它的四边长分别是60米、72米、96米、84米,现在四边上植树,四角需种树,而且每两棵树的间隔相等,那么,至少要种多少棵树?()
A、22
B、25
C、26
D、30
【答案】:答案:C
解析:根据四角需种树,且每两棵树的间隔相等可知,间隔距离应为四边边长的公约数;要使棵树至少,则间隔距离要尽量最大,公约数最大为12(60、72、96、84的最大公约数)。故棵数=段数=长度÷间距=(60+72+84+96)÷12=26(棵)。故选C。56、一人骑车上班需要50分钟,途中骑了一段时间后自行车坏了,只好推车去上班,结果晚到10分钟,如果骑车的速度比步行的速度快一倍,则步行了多少分钟?()
A、20
B、34
C、40
D、50
【答案】:答案:A
解析:设骑车速度为2,步行速度为1,设步行时间为t分钟,由题意可知,50×2=2(50+10-t)+1t,得t=20,即步行了20分钟。故选A。57、1,7,8,57,()
A、123
B、122
C、121
D、120
【答案】:答案:C
解析:12+7=8,72+8=57,82+57=121。故选C。58、某校二年级全部共3个班的学生排队.每排4人,5人或6人,最后一排都只有2人.这个学校二年级有()名学生。
A、120
B、122
C、121
D、123
【答案】:答案:B
解析:由题意知,学生数除以4、5、6均余2,由代入法可以得到,只有B项满足条件。59、某机场一条自行人行道长42m,运行速度0.75m/s。小王在自行人行道的起始点将一件包裹通过自动人行道传递给位于终点位置的小明。小明为了节省时间,在包裹开始传递时,沿自行人行道逆行领取包裹并返回。假设小明的步行速度是1m/s,则小明拿着包裹并回到自行人行道终点共需要的时间是()。
A、4秒
B、42秒
C、48秒
D、56秒
【答案】:答案:C
解析:小明沿自行人行道走,取到包裹用时为42/(1+0.75)=24秒,小明运动距离24×1=24米,返回时间=24/1=24秒,共用时24+24=48秒。故选C。60、现有5盒动画卡片,各盒卡片张数分别为:7、9、11、14、17。卡片按图案分为米老鼠、葫芦娃、喜羊羊和灰太狼4种,每个盒内装的是同图案的卡片。已知米老鼠的卡片只有一盒,而喜羊羊、灰太狼图案的卡片数之和比葫芦娃图案的多1倍。据此可知,图案为米老鼠的卡片张数为()。
A、7
B、9
C、14
D、17
【答案】:答案:A
解析:(喜洋洋+灰太狼):葫芦娃=2:1,喜洋洋+灰太狼+葫芦娃是3的倍数;总张数=7+9+11+14+17=58张,58除以3余1,可得米老鼠的卡片只能是7张。故选A。61、1,2,6,30,210,()
A、1890
B、2310
C、2520
D、2730
【答案】:答案:B
解析:2÷1=2,6÷2=3,30÷6=5,210÷30=7,相邻两项后一项除以前一项的商构成连续的质数列,即所填数字为210×11=2310。故选B。62、7,7,9,17,43,()
A、119
B、117
C、123
D、121
【答案】:答案:C
解析:依次将相邻两项做差得0,2,10,26,再次做差得2,6,18。构成一个公比为3的等比数列,即所填数字为43+26+18×3=123。故选C。63、-24,3,30,219,()
A、289
B、346
C、628
D、732
【答案】:答案:D
解析:-24=(-3)3+3,3=03+3,30=33+3,219=63+3,即所填数字为93+3=732。故选D。64、2,7,14,21,294,()
A、28
B、35
C、273
D、315
【答案】:答案:D
解析:21=7+14,14=2×7,294=14×21,为两项相加、相乘交替得到后-项,即所填数字为21+294=315。故选D。65、21,59,1117,2325,(),9541
A、3129
B、4733
C、6833
D、8233
【答案】:答案:B
解析:原数列各项可作如下拆分:[2|1],[5|9],[11|17],[23|25],[47|33],[95|41]。其中前半部分数字作差后构成等比数列,后半部分作差后构成等差数列。因此未知项为4733。故选B。66、某楼盘的地下停车位,第一次开盘时平均价格为15万元/个;第二次开盘时,车位的销售量增加了一倍、销售额增加了60%。那么,第二次开盘的车位平均价格为()。
A、10万元/个
B、11万元/个
C、12万元/个
D、13万元/个
【答案】:答案:C
解析:销售额=平均价格×销售量,已知第一次开盘平均价格为15万元/个,赋销售量为1,则销售额为15万。第二次开盘时,销售量增加了一倍,即为2,销售额增加了60%,得销售额为15×(1+60%)=24(万元),故第二次开盘平均价格为24÷2=12(万元/个)。故选C。67、某商店有两个进价不同的计算器都卖了64元,其中一个赢利60%,另一个亏本20%。在这次买卖中,这家商店()。
A、不赔不赚
B、赚了8元
C、赔了8元
D、赚了32元
【答案】:答案:B
解析:根据题意可知,64÷(1+60%)=40,64÷(1-20%)=80,即两个计算器的成本分别为40元、80元。64+64-40-80=8元,即赚了8元。故选B。68、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故选C。69、12,23,35,47,511,()
A、613
B、612
C、611
D、610
【答案】:答案:A
解析:数位数列,各项首位数字“1,2,3,4,5,(6)”构成等差数列,其余数字“2,3,5,7,11,(13)”构成质数数列。因此,未知项为613。故选A。70、1,3,2,6,11,19,()
A、24
B、36
C、29
D、38
【答案】:答案:B
解析:该数列为和数列,即前三项之和为第四项。故空缺处应为6+11+19=36。故选B。71、9,20,42,86,(),350
A、172
B、174
C、180
D、182
【答案】:答案:B
解析:20=9×2+2,42=20×2+2,86=42×2+2,第一项×2+2=第二项,即所填数字为86×2+2=174。故选B。72、一人上楼,边走边数台阶。从一楼走到四楼,共走了54级台阶。如果每层楼之间的台阶数相同,他一直要走到八楼,问他从一楼到八楼一共要走多少级台阶?()
A、126
B、120
C、114
D、108
【答案】:答案:A
解析:从一楼走到四楼,共走了54级台阶,而他实际走了3层楼的高度,所以每层楼的台阶数为54÷3=18级。他从一楼到八楼一共要走7层楼,因此共要走7×18=126级台阶。故选A。73、商店购入一百多件A款服装,其单件进价为整数元,总进价为1万元,已知单件B款服装的定价为其进价的1.6倍,其进价为A款服装的75%,销售每件B款服装的利润为A款服装的一半,某日商店以定价销售A款服装的总销售额超过2500元,问当天至少销售了多少件A款服装?()
A、13
B、15
C、17
D、19
【答案】:答案:C
解析:推出A款服装有125件,进价为80元,B款服装进价为80×0.75=60(元),B款服装定价为60×1.6=96(元),利润为96-60=36(元),A款服装利润为36×2=72(元),所以A款服装售价为80+72=152(元)。销售数量至少为2500÷152=16.4,取整为17件。故选C。74、张老师家四代同堂,且从父亲、张老师、儿子到孙子,每两代人的年龄差相同。5年前张老师父亲的年龄是儿子的3倍,8年后张老师的年龄是孙子的5倍。问今年四个人的年龄之和为()。
A、168岁
B、172岁
C、176岁
D、180岁
【答案】:答案:C
解析:父亲、张老师、儿子、孙子每两代人年龄差相同,设此年龄差为d,则父亲为(儿+2d),张老师为 (儿+d),孙子为(儿-d),因此四人年龄总和为(4儿+2d)。由5年前张老师父亲年龄是儿子的3倍即比儿子大2倍,即2d=2(儿-5)①;由8年后张老师年龄是孙子的5倍即比孙子大4倍即2d=4(儿-d+8)②;由①②可得儿=31,d=26,因此四人年龄总和为4儿+2d=4×31+2×26=176(岁)。故选C。75、4,10,34,130,()
A、184
B、258
C、514
D、1026
【答案】:答案:C
解析:解法一:二级等差数列变式。解法二:从第三项开始,第三项等于第二项的5倍减去第一项的4倍,即34=5×10-4×4,130=5×34-4×10,(514)=5×130-4×34。故选C。76、一旅行团共有50位游客到某地旅游,去A景点的游客有35位,去B景点的游客有32位,去C景点的游客有27位,去A、B景点的游客有20位,去B、C景点的游客有15位,三个景点都去的游客有8位,有2位游客去完一个景点后先行离团,还有1位游客三个景点都没去。那么,50位游客中有多少位恰好去了两个景点?()
A、29
B、31
C、35
D、37
【答案】:答案:A
解析:设去两个景点的人数为y,根据三集合非标准型公式可得:35+32+27-y-2×8=50-1,解得y=29。故选A。77、小孙的口袋里有四颗糖,一颗巧克力味的,一颗苹果味的,两颗牛奶味的。小孙任意从口袋里取出两颗糖,他看了看后说,其中一颗是牛奶味的。问小孙取出的另一颗糖也是牛奶味的可能性(概率)是多少?()
A、1/3
B、1/4
C、1/5
D、1/6
【答案】:答案:C
解析:两颗都是牛奶味的糖只有一种情况,而其中至少一颗是牛奶味的糖共有5种情况:(牛奶味1、苹果味),(牛奶味1、巧克力味),(牛奶味2、苹果味),(牛奶味2、巧克力味),(牛奶味1、牛奶味2)。因此取出的另一颗糖也是牛奶味的概率为1/5。故选C。78、13×99+135×999+1357×9999的值是()。
A、13507495
B、13574795
C、13704675
D、13704795
【答案】:答案:D
解析:原式=13×(100-1)+135×(1000-1)+1357×(10000-1)=1300+135000+13570000-(13+135+1357)=13704795。故选D。79、祖父今年65岁,3个孙子的年龄分别是15岁、13岁与9岁,问多少年后3个孙子的年龄之和等于祖父的年龄?()
A、23
B、14
C、25
D、16
【答案】:答案:B
解析:设n年后3个孙子的年龄之和等于祖父的年龄,可列方程:65+n=(15+n)+(13+n)+(9+n),解得n=14。故选B。80、甲、乙两人在一条400米的环形跑道上从相距200米的位置出发,同向匀速跑步。当甲第三次追上乙的时候,乙跑了2000米。问甲的速度是乙的多少倍?()
A、1.2
B、1.5
C、1.6
D、2.0
【答案】:答案:B
解析:环形同点同向出发每追上一次,甲比乙多跑一圈。第一次由于是不同起点,甲比乙多跑原来的差距200米;之后两次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,时间相同,则速度比与路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故选B。81、226,264,316,388,()
A、236
B、386
C、486
D、566
【答案】:答案:C
解析:226=225+1=152+13,264=256+8=162+23,316=289+27=172+33,388=324+64=182+43,由此可以推知下一项应为192+53=486。故选C。82、1,2,3,6,12,24,()
A、48
B、45
C、36
D、32
【答案】:答案:A
解析:1+2=3,1+2+3=6,1+2+3+6=12,1+2+3+6+12=24,第N项=第N-1项+…+第一项,即所填数字为1+2+3+6+12+24=48。故选A。83、-24,3,30,219,()
A、289
B、346
C、628
D、732
【答案】:答案:D
解析:-24=(-3)3+3,3=03+3,30=33+3,219=63+3,即所填数字为93+3=732。故选D。84、0,6,24,60,()
A、70
B、80
C、100
D、120
【答案】:答案:D
解析:0=0×1×2,6=1×2×3,24=2×3×4,60=3×4×5,()=4×5×6=120。另解,0=13-1,6=23-2,24=33-3,60=43-4,()=53-5=120。故选D。85、4,5,7,9,13,15,()
A、17
B、19
C、18
D、20
【答案】:答案:B
解析:各项减2后为质数列,故下一项为17+2=19。故选B。86、2/3,1/2,3/7,7/18,()
A、4/11
B、5/12
C、7/15
D、3/16
【答案】:答案:A
解析:4/11,2/3=4/6,1/2=5/10,3/7=6/14,…分子是4、5、6、7,接下来是8.分母是6、10、14、18,接下来是22。故选A。87、1,10,3,5,()
A、4
B、9
C、13
D、15
【答案】:答案:C
解析:把每项变成汉字为一、十、三、五、十三的笔画数1,2,3,4,5等差。故选C。88、-7,0,1,2,9,()
A、42
B、18
C、24
D、28
【答案】:答案:D
解析:-7=(-2)3+1;0=(-1)3+1;1=03+1;2=13+1;9=23+1;28=33+1。故选D。89、1,2,0,3,-1,4,()
A、-2
B、0
C、5
D、6
【答案】:答案:A
解析:奇数项1、0、-1、(-2)是公差为-1的等差数列;偶数项2、3、4是连续自然数。故选A。90、3,10,31,94,(),850
A、250
B、270
C、282
D、283
【答案】:答案:D
解析:10=3×3+1,31=10×3+1,94=31×3+1,每一项等于前一项乘以3加上1,即所填数字为94×3+1=283。故选D。91、30,42,56,72,()
A、86
B、60
C、90
D、94
【答案】:答案:C
解析:第一次做差之后为12、14、16,是公差为2的等差数列,下一个应为18,原数列下一项为18+72=90。故选C。92、1806,1510,1214,918,()
A、724
B、722
C、624
D、622
【答案】:答案:D
解析:百位和千位看做一个数列,是18,15,12,9,构成公差为-3的等差数列,所以下一项应为6;十位和个位看做一个数列,是06,10,14,18,构成公差为4的等差数列,所以下一项应为22。故未知项应为622。故选D。93、4,5,7,9,13,15,()
A、17
B、19
C、18
D、20
【答案】:答案:B
解析:各项减2后为质数列,故下一项为17+2=19。故选B。94、-1,6,25,62,()
A、123
B、87
C、150
D、109
【答案】:答案:A
解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故选A。95、a除以5余1,b除以5余4,如果3a>b,那么3a-b除以5余几?()
A、1
B、2
C、3
D、4
【答案】:答案:D
解析:a除以5余1,假设a=6;b除以5余4,假设b=9,符合3a>b。故3a-b=18-9=9,9除以5余4。故选D。96、1,2,3,6,12,24,()
A、48
B、45
C、36
D、32
【答案】:答案:A
解析:1+2=3,1+2+3=6,1+2+3+6=12,1+2+3+6+12=24,第N项=第N-1项+…+第一项,即所填数字为1+2+3+6+12+24=48。故选A。97、2/3,1/2,3/7,7/18,()
A、4/11
B、5/12
C、7/15
D、3/16
【答案】:答案:A
解析:4/11,2/3=4/6,1/2=5/10,3/7=6/14,…分子是4、5、6、7,接下来是8.分母是6、10、14、18,接下来是22。故选A。98、2.08,8.16,24.32,64.64,()
A、160.28
B、124.28
C、160.56
D、124.56
【答案】:答案:A
解析:小数点之前满足规律:(8-2)×4=24,(24-8)×4=64,(64-24)×4=160,排除B.D两项。小数点之后构成等比数列8,16,32,64,128,小数点之后的数超过三位取后两位,所以未知项是160.28。故选A。99、133/256,125/64,117/16,()
A、109/4
B、103/2
C、109/6
D、115/8
【答案】:答案:A
解析:分子133、125、117、(109)是公差为-8的等差数列,分母256、64、16、(4)是公比为1/4的等比数列。故选A。100、某农场有36台收割机,要收割完所有的麦子需要14天时间。现收割了7天后增加4台收割机,并通过技术改造使每台机器的效率提升,问收割完所有的麦子还需要几天。
A.3
B.4
C.5
D.6
【答案】:答案:D
解析:方法一:赋值法,赋值每台收割机每天的工作效率为1,则工作总量为36×14,剩下的36×7由36+4=40台收割机完成,技术改造后每台收割机效率为,故剩下需要的时间为。方法二:比例法。由题意,原有收割机36台,增加4台后变为40台,提高效率5%后相当于原先40×(1+5%)=42台收割机的工作效率。效率比为6∶7,故所有时间比为7∶6,还需6天即可完成。故正确答案为D。101、要将浓度分别为20%和5%的A、B两种食盐水混合配成浓度为15%的食盐水900克,问5%的食盐水需要多少克?()
A、250
B、285
C、300
D、325
【答案】:答案:C
解析:设需要5%的食盐水x克,则需要20%的食盐水(900-x)克;根据混合后浓度为15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故选C。102、1,1,2,6,30,240,()
A、1200
B、1800
C、2400
D、3120
【答案】:答案:D
解析:1*2=2,2*3=6,6*5=30,30*8=240,后面除以前面的商是斐波那契数列2、3、5、8,即后一项是前面2项的和,8后面是13,240后面应该是240*13=3120。故选D。103、5,7,9,(),15,19
A、11
B、12
C、13
D、14
【答案】:答案:C
解析:5=2+3,7=2+5,9=2+7,15=2+13,19=2+17,每一项是一个连续质数数列与2的和,即所填数字为11+2=13。故选C。104、12,27,72,(),612
A、108
B、188
C、207
D、256
【答案】:答案:C
解析:(第一项-3)×3=第二项,(72-3)×3=(207),(207-3)×3=612。故选C。105、水面上有三艘同向行驶的轮船,其中甲船的时速为63公里,乙、丙两船的时速均为60公里,但由于故障,丙船每连续行驶30分钟后必须停船2分钟。早上10点,三船到达同一位置,问1小时后,甲、丙两船最多相距多少公里?()
A、5
B、7
C、9
D、11
【答案】:答案:B
解析:1小时内,甲船行驶了63公里,丙船最多停车4分钟,即行驶56分钟,行驶路程为56公里。故最多相距7公里。故选B。106、某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少生产100套;如果每天生产23套服装,就可超过订货任务20套。那么,这批服装的订货任务是多少套?()
A、760
B、1120
C、900
D、850
【答案】:答案:C
解析:由题意每天生产多出3套,总共就会多生产出120,那么计划的天数为40天,所以这批服装为20×40+100=900(套)。故选C。107、在列车平行轨道上,甲、乙两列火车相对开来。甲列火车长236米,每秒行38米;乙列火车长275米,已知这两列火车错车开过用了7秒钟,则乙列火车按这个速度通过长为2000米的隧道需要()秒钟。
A、65
B、70
C、75
D、80
【答案】:答案:A
解析:236+275=(38+v)×7,所以v=35,那么275+2000=35t,t=65,选A。108、8,10,14,18,()
A、24
B、32
C、26
D、20
【答案】:答案:C
解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故选C。109、1,10,3,5,()
A、4
B、9
C、13
D、15
【答案】:答案:C
解析:把每项变成汉字为一、十、三、五、十三的笔画数1,2,3,4,5等差。故选C。110、30,42,56,72,()
A、86
B、60
C、90
D、94
【答案】:答案:C
解析:第一次做差之后为12、14、16,是公差为2的等差数列,下一个应为18,原数列下一项为18+72=90。故选C。111、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多少?()
A、256
B、486
C、556
D、376
【答案】:答案:B
解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不如将它换成2个3。因为2×2×2=8,而3×3=9。故拆分出的自然数中,至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,其乘积最大,最大值为243×2=486。故选B。112、2,3,8,27,32,(),128
A、64
B、243
C、275
D、48
【答案】:答案:B
解析:间隔组合数列。奇数项是公比为4的等比数列,偶数项是公比为9的等比数列,所求项为27×9=(243)。故选B。113、1,1,3,7,17,41,()
A、89
B、99
C、109
D、119
【答案】:答案:B
解析:第三项=第二项×2+第一项,99=41×2+17。故选B。114、某水库共有10个泄洪闸,当10个泄洪闸全部打开时,8小时可将水位由警戒水位降至安全水位;只打开6个泄洪闸时,这个过程为24个小时,如水库每小时的入库量稳定,问如果打开8个泄洪闸时,需要多少小时可将水位降至安全水位?()
A、10
B、12
C、14
D、16
【答案】:答案:B
解析:设水库每小时的入库量为x。根据题意可列方程(10-x)8=(6-x)24,解得x=4,故水库警戒水位至安全水位的容量为(10-4)×8=48;设打开8个泄洪闸需t小时可将水位降至安全水位;则48=(8-4)t,解得t=12。故选B。115、8,6,-4,-54,()
A、-118
B、-192
C、-320
D、-304
【答案】:答案:D
解析:依次将相邻两个数中后一个数减去前一个数得-2,-10,-50,构成公比为5的等比数列,即所填数字为-54+(-250)=-304。故选D。116、97,95,92,87,()
A、81
B、79
C、74
D、66
【答案】:答案:B
解析:97+(-2)=95,95+(-3)=92,92+(-5)=87,数列中两项之差形成的数列为-2,-3,-5,而(-2)+(-3)=(-5),后一项为前两项之和,下一个数为(-3)+(-5)=(-8),即所填数字为87+(-8)=79。故选B。117、甲乙丙三人参加一项测试,三人的平均分为80,甲乙两人的平均分为75,乙丙两人的平均分为80,那么甲丙两人的平均分为()。
A、70
B、75
C、80
D、85
【答案】:答案:D
解析:甲乙丙、甲乙的平均分分别为80、75,可知丙的分数大于80分;甲乙丙、乙丙的平均分分别为80、80,可知甲的分数为80分。则甲丙平均分大于80分。故选D。118、2,3,13,175,()
A、30625
B、30651
C、30759
D、30952
【答案】:答案:B
解析:第一项乘以2,然后加第二项的平方等于第三项。2×2+3×3=13。第二项乘以2,然后加第三项的平方等于第四项。3×2+13×13=175。第三项乘以2,然后加第四项的平方等于第五项。13×2+175×175=30651。故选B。119、如果现在是18点整,那么分针旋转1990圈之后是几点钟?()
A、16
B、17
C、18
D、19
【答案】:答案:A
解析:分针旋转1圈为一小时,所以分针旋转12圈,时针旋转1圈,仍为18点整。由“1990÷12=165余10”可知,此时时钟表示的时间应是16点整。故选A。120、甲、乙、丙、丁四人开展羽毛球比赛,首轮每人需和另外3人各比1场,获胜2场及以上者进入下一轮,否则淘汰。甲胜乙、丙、丁的概率分别为70%、50%、40%,问甲首轮遭淘汰的概率是多少?()
A、42.5%
B、45%
C、47.5%
D、48%
【答案】:答案:B
解析:获胜2场及以上者进入下一轮,甲首轮遭淘汰,则甲输了2场或者3场。分别枚举如下:(1)甲输三场的概率为30%×50%×60%=9%;(2)甲输两场有三种可能:①赢乙输丙丁,概率为70%×50%×60%=21%;②赢丙输乙丁,概率为30%×50%×60%=9%;③赢丁输乙丙,概率为30%×50%×40%=6%。甲首轮遭淘汰的概率为9%+21%+9%+6%=45%。故选B。121、5,12,24,36,52,()
A、58
B、62
C、68
D、72
【答案】:答案:C
解析:5=2+3,12=5+7,24=11+13,36=17+19,52=23+29,全是从小到大的质数和,所以下一个是31+37=68。故选C。122、2,17,29,38,44,()
A、45
B、46
C、47
D、48
【答案】:答案:C
解析:做差。第一次做差结果为15,12,9,6,所以后面一项为3,后面一项为47。故选C。123、2,3,10,15,26,35,()
A、40
B、45
C、50
D、55
【答案】:答案:C
解析:2=1平方+1,3=2平方-1,10=3平方+1,15=4平方-1,26=5平方+1,35=6平方-1,问号=7平方+1,问号=50。故选C。124、145,120,101,80,65,()
A、48
B、49
C、50
D、51
【答案】:答案:A
解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇数项,每项等于首项为12,公差为-2的平方加1;偶数项,每项等于首项为11,公差为-2的平方减1,即所填数字为72-1=48。故选A。125、6,21,43,72,()
A、84
B、96
C、108
D、112
【答案】:答案:C
解析:依次将相邻两个数中后一个数减去前一个数得15,22,29,构成公差为7的等差数列,即所填数字为72+29+7=108。故选C。126、60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少再得多少票就一定当选?()
A、15
B、13
C、10
D、8
【答案】:答案:B
解析:构造最不利,由题意,还剩30名员工没有投票,考虑最不利的情况,乙对甲的威胁最大,先给乙5张选票,甲乙即各有15张选票,其余25张选票中,甲只要在获得13张选票就可以确定当选。故选B。127、一旅行团共有50位游客到某地旅游,去A景点的游客有35位,去B景点的游客有32位,去C景点的游客有27位,去A、B景点的游客有20位,去B、C景点的游客有15位,三个景点都去的游客有8位,有2位游客去完一个景点后先行离团,还有1位游客三个景点都没去。那么,50位游客中有多少位恰好去了两个景点?()
A、29
B、31
C、35
D、37
【答案】:答案:A
解析:设去两个景点的人数为y,根据三集合非标准型公式可得:35+32+27-y-2×8=50-1,解得y=29。故选A。128、一人骑车上班需要50分钟,途中骑了一段时间后自行车坏了,只好推车去上班,结果晚到10分钟,如果骑车的速度比步行的速度快一倍,则步行了多少分钟?()
A、20
B、34
C、40
D、50
【答案】:答案:A
解析:设骑车速度为2,步行速度为1,设步行时间为t分钟,由题意可知,50×2=2(50+10-t)+1t,得t=20,即步行了20分钟。故选A。129、接受采访的100个大学生中,88人有手机,76人有电脑,其中有手机没电脑的共15人,则这100个学生中有电脑但没手机的共有多少人?()
A、25
B、15
C、5
D、3
【答案】:答案:D
解析:根据有手机没电脑共15人,可得既有手机又有电脑(①部分)的人数为88-15=73人,则有电脑但没手机(②部分)的人数为76-73=3人。故选D。130、0,4,18,48,()
A、96
B、100
C、125
D、136
【答案】:答案:B
解析:思路一:0=0×12;4=1×22;18=2×32;48=3×42;100=4×52。思路二:1×0=0;2×2=4;3×6=18;4×12=48;5×20=100;项数12345;乘以0,2,6,12,20=>作差2,4,6,8。故选B。131、118,199,226,(),238
A、228
B、230
C、232
D、235
【答案】:答案:D
解析:相邻两项后一项减前一项,199-118=81,226-199=27,235-226=9,238-235=3,是公比为的等比数列,即所填数字为238-3=226+9=235。故选D。132、1,1,2,8,64,()
A、1024
B、1280
C、512
D、128
【答案】:答案:A
解析:后一项除以前一项得1、2、4、8、(16),构成公比为2的等比数列,64×16=(1024)。故选B。133、60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少再得多少票就一定当选?()
A、15
B、13
C、10
D、8
【答案】:答案:B
解析:构造最不利,由题意,还剩30名员工没有投票,考虑最不利的情况,乙对甲的威胁最大,先给乙5张选票,甲乙即各有15张选票,其余25张选票中,甲只要在获得13张选票就可以确定当选。故选B。134、1,1,3,7,17,41,()
A、89
B、99
C、109
D、119
【答案】:答案:B
解析:第三项=第二项×2+第一项,99=41×2+17。故选B。135、145,120,101,80,65,()
A、48
B、49
C、50
D、51
【答案】:答案:A
解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇数项,每项等于首项为12,公差为-2的平方加1;偶数项,每项等于首项为11,公差为-2的平方减1,即所填数字为72-1=48。故选A。136、有一架天平,只有5克和30克的砝码各一个。现在要用这架天平把300克味精平均分成3份,那么至少需要称多少次?()
A、3次
B、4次
C、5次
D、6次
【答案】:答案:A
解析:第1次,用30克和5克砝码称出35克味精;第2次,再35克味精作为砝码,和30克砝码一起称出65克味精,此时已称出100克味精;第3次,用100克味精作为砝码称出100克味精,还剩100克。把300克味精平均分为3份。故“至少”需要3次。故选A。137、甲乙两地相距500公里,在1厘米等于50公里比例尺的地图上,两地之间的距离是()厘米。
A、5
B、10
C、15
D、100
【答案】:答案:B
解析:1公分=50公里,500公里=10公分,所求为500×1/50=10厘米。故选B。138、30个小朋友围成一圈玩传球游戏,每次球传给下一个小朋友需要1秒。当老师喊“转向”时,要改变传球方向。如果从小华开始传球,老师在游戏开始后的第16、31、49秒喊“转向”,那么在第多少秒时,球会重新回到小华手上?()
A、68
B、69
C、70
D、71
【答案】:答案:A
解析:设小华的位置为0号,按顺时针方向编号依次为0号、1号、2号、……、29号。小华以顺时针方向开始传球。①经过16秒,顺时针传到16号;②转向:经过15秒(31-16=15),逆时针传到1号;③转向:经过18秒(49-31=18),顺时针传到19号;④转向:经过19秒,逆时针传回到小华手中。在第49+19=68(秒)时,球会重新回到小华手上。故选A。139、a除以5余1,b除以5余4,如果3a>b,那么3a-b除以5余几?()
A、1
B、2
C、3
D、4
【答案】:答案:D
解析:a除以5余1,假设a=6;b除以5余4,假设b=9,符合3a>b。故3a-b=18-9=9,9除以5余4。故选D。140、调研人员在一次市场调查活动中收回了435份调查问卷,其中80%的调查问卷上填写了被调查者的手机号码。那么调研人员至少需要从这些调查表中随机抽出多少份,才能保证一定能找到两个手机号码后两位相同的被调查者?()
A、101
B、175
C、188
D、200
【答案】:答案:C
解析:在435份调查问卷中有435×20%=87份没有写手机号;且手机号码后两位可能出现的情况一共10×10=100种,因此要保证一定能找到两个手机号码后两位相同的被调查者,至少需要抽取87+100+1=188份。故选C。141、5,10,20,(),80
A、30
B、40
C、50
D、60
【答案】:答案:B
解析:公比为2的等比数列。故选B。142、某商店以5元/斤的价格购入一批蔬菜,上午以8元/斤的价格卖出总进货量的60%,中午以上午售出价的8折卖出总进货量的20%,下午以中午售出价的一半卖出剩余货量的一半,最后获利210元。则该商店一共购入多少斤蔬菜?()
A、140
B、150
C、160
D、180
【答案】:答案:B
解析:赋值购进的量为10斤,上午以8元/斤的价格卖出6斤,中午以6.4元/斤的价格卖出2斤,下午以3.2元/斤的价格卖出1斤,总收入=8×6+6.4×2+3.2×1=64元,总利润=64-5×10=14元,实际购入(210/14)×10=150斤。故选B。143、7,9,-1,5,()
A、3
B、-3
C、2
D、-1
【答案】:答案:B
解析:7+9=16,9+(-1)=8,(-1)+5=4,5+(-3)=2,其中16,8,4,2等比。故选B。144、某旅游部门规划一条从甲景点到乙景点的旅游线路,经测试,旅游船从甲到乙顺水匀速行驶需3小时;从乙返回甲逆水匀速行驶需4小时。假设水流速度恒定,甲乙之间的距离为y公里,旅游船在静水中匀速行驶y公里需要x小时,则x满足的方程为()。
A、1/3-1/x=1/x-1/4
B、1/3-1/x=1/4+1/x
C、1/(x+3)=1/4-1/x
D、1/(4-x)=1/x+1/3
【答案】:答案:A
解析:由题意可知,旅游船的静水速度为y/x公里/时,顺水速度为y/3公里/时,逆水速度为y/4公里/时。由水速=水速度-静水速度=静水速度-逆水速度,我们可得:y/3-y/x=y/x-y/4,消去y,得:1/3-1/x=1/x-1/4,故选A。考点点拨:解决流水问题的关键在于找出船速、水速、顺水速度和逆水速度四个量,然后根据其之间的关系求出未知量。故选A。145、6,21,43,72,()
A、84
B、96
C、108
D、112
【答案】:答案:C
解析:依次将相邻两个数中后一个数减去前一个数得15,22,29,构成公差为7的等差数列,即所填数字为72+29+7=108。故选C。146、有苹果若干个,若把其换成桔子,则多换5个;若把其换成菠萝,则少掉7个,已知每个桔子4角9分钱,每个菠萝7角钱,每个苹果的单价是多少?()
A、5角
B、5角8分
C、5角6分
D、5角4分
【答案】:答案:C
解析:此题可理解为:把苹果全部卖掉,得到钱若干,若用这些钱买成同样数量的桔子,则剩下49×5=245分,若用这些钱买成同样数量的菠萝,则缺少70×7=490分,所以苹果个数=(245+490)÷(70-49)=35个,苹果总价=49×35+49×5=1960分,每个苹果单价=1960÷35=56分=5角6分。故选C。147、1,2,0,3,-1,4,()
A、-2
B、0
C、5
D、6
【答案】:答案:A
解析:奇数项1、0、-1、(-2)是公差为-1的等差数列;偶数项2、3、4是连续自然数。故选A。148、2,3,10,23,()
A、35
B、42
C、68
D、79
【答案】:答案:B
解析:相邻两项后一项减前一项,3-2=1,10-3=7,13-10=13,42-23=19,是一个公差为6的等差数列,即所填数字为23+19=42。故选B。149、41,59,32,68,72,()
A、28
B、36
C、40
D、48
【答案】:答案:A
解析:两两分组得到(41,59),(32,68),(72,()),发现组内做和均为100。故选A。150、130,68,30,(),2
A、11
B、12
C、10
D、9
【答案】:答案:C
解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故选C。151、6,3,5,13,2,63,()
A、-36
B、-37
C、-38
D、-39
【答案】:答案:B
解析:6×3-5=13,3×5-13=2,5×13-2=63,第四项=第一项×第二项-第三项,即所填数字为13×2-63=-37。故选B。152、修一条公路,甲工程队单独做需要40天,乙工程队单独做需要24天。现在两队合作,同时从两端开工,在距中点750米处两队相遇。那么这条公路长多少米?()
A、3750
B、3000
C、4000
D、6000
【答案】:答案:D
解析:甲乙效率之比
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年合作开拓:招商合同范文集成3篇
- 金融机构保安工作总结计划
- 保安公司浮雕施工协议
- 2024年夏令营活动场地出租合同3篇
- 2024版酒店管理与酒水销售合作协议2篇
- 图书馆活动灯具租赁协议
- 2024年区域代理:润滑油独家销售合同
- 2024年度高品质大尺寸地毯专用塑料包装袋订购合同版
- 水电站景观施工合同
- 2024年度互联网服务合同:网站建设、运营与维护3篇
- 学校心理辅导期末考试复习题及参考答案
- 酒精所致精神障碍护理查房课件
- 社会调查研究与方法 期末复习练习题 (适用网考)(2023秋)
- 私密项目商业计划书
- 环保危险源辨识清单
- (抖音)微信借钱申请表
- 起重吊装工程安全监理实施细则(2篇)
- 小学一年级劳动课教案(全册)
- 个人基本情况表格模板
- 黑龙江伊春旅游介绍PPT模板
- 项目运维报告
评论
0/150
提交评论