




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津一中2024年高一下数学期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在空间中,有三条不重合的直线,,,两个不重合的平面,,下列判断正确的是A.若∥,∥,则∥ B.若,,则∥C.若,∥,则 D.若,,∥,则∥2.某人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.只有一次中靶C.两次都中靶D.两次都不中靶3.在△ABC中,a,b,c分别为内角A,B,C所对的边,b=c,且满足=,若点O是△ABC外一点,∠AOB=θ(0<θ<π),OA=2OB=2,则平面四边形OACB面积的最大值是()A. B. C.3 D.4.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的()A.5 B.4 C.3 D.95.各项不为零的等差数列中,,数列是等比数列,且,则()A.4 B.8 C.16 D.646.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.则获得复赛资格的人数为()A.640 B.520 C.280 D.2407.已知在R上是奇函数,且满足,当时,,则()A.-2 B.2 C.-98 D.988.南北朝数学家祖暅在推导球的体积公式时构造了一个中间空心的几何体,经后继学者改进后这个中间空心的几何体其三视图如图所示,下列那个值最接近该几何体的体积()A.8 B.12 C.16 D.249.已知,则()A.-3 B. C. D.310.已知函数在上单调递增,且的图象关于对称.若,则的解集为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知扇形的圆心角为,半径为5,则扇形的弧长_________.12.已知等差数列,,,,则______.13.如果数据的平均数是,则的平均数是________.14.若等差数列的前项和,且,则______________.15.若直线与直线平行,则实数a的值是________.16.若角的终边经过点,则的值为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.平面内给定三个向量=(3,2),=(-1,2),=(4,1).(1)求满足的实数m,n;(2)若,求实数k;18.对于定义域相同的函数和,若存在实数,使,则称函数是由“基函数,”生成的.(1)若函数是“基函数,”生成的,求实数的值;(2)试利用“基函数,”生成一个函数,且同时满足:①是偶函数;②在区间上的最小值为.求函数的解析式.19.已知的三个内角、、的对边分别是、、,的面积,(Ⅰ)求角;(Ⅱ)若中,边上的高,求的值.20.已知向量,,且.(1)求的值;(2)求的值.21.若,且,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据空间中点、线、面的位置关系的判定与性质,逐项判定,即可求解,得到答案.【详解】由题意,A中,若∥,∥,则与可能平行、相交或异面,故A错误;B中,若,,则与c可能平行,也可能垂直,比如墙角,故B错误;C中,若,∥,则,正确;D中,若,,∥,则与可能平行或异面,故D错误;故选C.【点睛】本题主要考查了线面位置关系的判定与证明,其中解答中熟记空间中点、线、面的位置关系,以及线面位置关系的判定定理和性质定理是解答的关键,着重考查了推理与论证能力,属于中档试题.2、D【解析】
根据互斥事件的定义逐个分析即可.【详解】“至少有一次中靶”与“至多有一次中靶”均包含中靶一次的情况.故A错误.“至少有一次中靶”与“只有一次中靶”均包含中靶一次的情况.故B错误.“至少有一次中靶”与“两次都中靶”均包含中靶两次的情况.故C错误.根据互斥事件的定义可得,事件“至少有一次中靶”的互斥事件是“两次都不中靶”.故选:D【点睛】本题主要考查了互斥事件的辨析,属于基础题型.3、A【解析】
根据正弦和角公式化简得是正三角形,再将平面四边形OACB面积表示成的三角函数,利用三角函数求得最值.【详解】由已知得:即所以即又因为所以所以又因为所以是等边三角形.所以在中,由余弦定理得且因为平面四边形OACB面积为当时,有最大值,此时平面四边形OACB面积有最大值,故选A.【点睛】本题关键在于把所求面积表示成角的三角函数,属于难度题.4、B【解析】
由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出,分析循环中各变量的变化情况,可得答案.【详解】当时,,,满足进行循环的条件;当时,,,满足进行循环的条件;当时,,,满足进行循环的条件;当时,,,不满足进行循环的条件;故选:B【点睛】本题主要考查程序框图,解题的关键是读懂流程图各个变量的变化情况,属于基础题.5、D【解析】
根据等差数列性质可求得,再利用等比数列性质求得结果.【详解】由等差数列性质可得:又各项不为零,即由等比数列性质可得:本题正确选项:【点睛】本题考查等差数列、等比数列性质的应用,属于基础题.6、B【解析】
由频率分布直方图得到初赛成绩大于90分的频率,由此能求出获得复赛资格的人数.【详解】初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,由频率分布直方图得到初赛成绩大于90分的频率为:1﹣(0.0025+0.0075+0.0075)×20=0.1.∴获得复赛资格的人数为:0.1×800=2.故选:B.【点睛】本题考查频率分布直方图的应用,考查频数的求法,考查频率分布直方图等基础知识,是基础题.7、A【解析】
由在R上是奇函数且周期为4可得,即可算出答案【详解】因为在R上是奇函数,且满足所以因为当时,所以故选:A【点睛】本题考查的是函数的奇偶性和周期性,较简单.8、C【解析】
由三视图确定此几何体的结构,圆柱的体积减去同底同高的圆锥的体积即为所求.【详解】该几何体是一个圆柱挖掉一个同底同高的圆锥,圆柱底为2,高为2,所求体积为,所以C选项最接近该几何体的体积.故选:C【点睛】本题考查由三视图确定几何体的结构及求其体积,属于基础题.9、C【解析】
由同角三角函数关系得到余弦、正切,再由两角差的正切公式得到结果.【详解】已知,则,,则故答案为C.【点睛】这个题目考查了三角函数的化简求值,1.利用sin2α+cos2α=1可以实现角α的正弦、余弦的互化,利用=tanα可以实现角α的弦切互化;2.注意公式逆用及变形应用:1=sin2α+cos2α,sin2α=1-cos2α,cos2α=1-sin2α.10、D【解析】
首先根据题意得到的图象关于轴对称,,再根据函数的单调性画出草图,解不等式即可.【详解】因为的图象关于对称,所以的图象关于轴对称,.又因为在上单调递增,所以函数的草图如下:所以或,解得:或.故选:D【点睛】本题主要考查函数的对称性,同时考查了函数的图象平移变换,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据扇形的弧长公式进行求解即可.【详解】∵扇形的圆心角α,半径为r=5,∴扇形的弧长l=rα5.故答案为:.【点睛】本题主要考查扇形的弧长公式的计算,熟记弧长公式是解决本题的关键,属于基础题.12、【解析】
利用等差中项的基本性质求得,,并利用等差中项的性质求出的值,由此可得出的值.【详解】由等差中项的性质可得,同理,由于、、成等差数列,所以,则,因此,.故答案为:.【点睛】本题考查利用等差中项的性质求值,考查计算能力,属于基础题.13、5【解析】
根据平均数的定义计算.【详解】由题意,故答案为:5.【点睛】本题考查求新数据的均值.掌握均值定义是解题关键.实际上如果数据的平均数是,则新数据的平均数是.14、【解析】
设等差数列的公差为,根据题意建立和的方程组,解出这两个量,即可求出的值.【详解】设等差数列的公差为,由题意得,解得,因此,.故答案为:.【点睛】本题考查等差数列中项的计算,解题的关键就是要建立首项和公差的方程组,利用这两个基本量来求解,考查运算求解能力,属于基础题.15、0【解析】
解方程即得解.【详解】因为直线与直线平行,所以,所以或.当时,两直线重合,所以舍去.当时,两直线平行,满足题意.故答案为:【点睛】本题主要考查两直线平行的性质,意在考查学生对这些知识的理解掌握水平,属于基础题.16、.【解析】
根据三角函数的定义求出的值,然后利用反三角函数的定义得出的值.【详解】由三角函数的定义可得,,故答案为.【点睛】本题考查三角函数的定义以及反三角函数的定义,解本题的关键就是利用三角函数的定义求出的值,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)由及已知得,由此列方程组能求出实数;(2)由,可得,由此能求出的值.【详解】(1)由题意得(3,2)=m(-1,2)+n(4,1),所以,解得;(2)∵a+kc=(3+4k,2+k),2b-a=(-5,2),∴2×(3+4k)-(-5)×(2+k)=0.∴k=.【点睛】本题主要考查相等向量与共线向量的性质,属于简单题.利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.18、(1).(2)【解析】
(1)根据基函数的定义列方程,比较系数后求得的值.(2)设出的表达式,利用为偶函数,结合偶函数的定义列方程,化简求得,由此化简的表达式,构造函数,利用定义法证得在上的单调性,由此求得的最小值,也即的最小值,从而求得的最小值,结合题目所给条件,求出的值,即求得的解析式.【详解】解:(1)由已知得,即,得,所以.(2)设,则.由,得,整理得,即,即对任意恒成立,所以.所以.设,,令,则,任取,且则,因为,且所以,,,故即,所以在单调递增,所以,且当时取到“”.所以,又在区间的最小值为,所以,且,此时,所以【点睛】本小题主要考查新定义函数的理解和运用,考查函数的单调性、奇偶性的运用,考查利用定义法证明函数的单调性,考查化归与转化的数学思想方法,考查函数与方程的思想,综合性较强,属于中档题.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由面积公式推出,代入所给等式可得,求出角C的余弦值从而求得角C;(Ⅱ)首先由求出边c,再由面积公式代入相应值求出边b,利用余弦定理即可求出边a.【详解】(Ⅰ)由得①于是,即∴又,所以(Ⅱ),由得,将代入中得,解得.【点睛】本题考查余弦定理解三角形,三角形面积公式,属于基础题.20、(1);(2)【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度全国电子产品区域独家代理合同
- 二零二五年度旅游行业品牌授权合作协议模板
- 夫妻投资店铺合同范本
- 2025年度辣椒种植基地租赁与产品收购服务合同
- 二零二五年度房地产项目资金监管协议书
- 二零二五年度智慧城市建设项目增资扩股合同
- 针对酒店住宿的2025年度服务质量保障与免责协议
- 二零二五年度高空作业塔吊安装与拆除合作协议
- 河北省二零二五年度租赁合同范本:仓储租赁
- 2025年中国汽车木地板市场调查研究报告
- 冬季感冒知识讲座
- 基于OBE理念的项目式学习模式设计与应用研究
- 医疗护理医学培训 小儿麻醉专家共识课件
- 模糊多属性决策方法及其在物流服务供应链管理中的应用研究
- 2024年广东省《辅警招聘考试必刷500题》考试题库含答案
- 《智能制造技术基础》课件-第1章 智能制造技术概述
- 国网基建安全管理课件
- 10.1.2事件的关系和运算(教学课件)高一数学(人教A版2019必修第二册)
- 传统与现代滋补品的营销变革
- 陈元方年十一时课件
- 2024解析:第九章固体压强-讲核心(解析版)
评论
0/150
提交评论