2023-2024学年云南省大理州大理市下关第一中学数学高一下期末质量跟踪监视模拟试题含解析_第1页
2023-2024学年云南省大理州大理市下关第一中学数学高一下期末质量跟踪监视模拟试题含解析_第2页
2023-2024学年云南省大理州大理市下关第一中学数学高一下期末质量跟踪监视模拟试题含解析_第3页
2023-2024学年云南省大理州大理市下关第一中学数学高一下期末质量跟踪监视模拟试题含解析_第4页
2023-2024学年云南省大理州大理市下关第一中学数学高一下期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年云南省大理州大理市下关第一中学数学高一下期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量=(2,tan),=(1,-1),∥,则=()A.2 B.-3 C.-1 D.-32.已知等差数列an的前n项和为Sn,若a8=12,S8A.-2 B.2 C.-1 D.13.已知,且,则()A. B. C. D.4.已知直线3x−y+1=0的倾斜角为α,则A. B.C.− D.5.如图,程序框图所进行的求和运算是()A. B.C. D.6.已知扇形的面积为,半径为,则扇形的圆心角的弧度数为A. B. C. D.7.设正项等比数列的前项和为,若,,则公比()A. B. C. D.8.已知a>0,b>0,a,b的等比中项为2,则a+1A.3 B.4 C.5 D.429.若角的顶点与坐标原点重合,始边与x轴的正半轴重合,终边经过点,则()A. B. C. D.10.设的内角所对的边分别为,且,已知的面积等于,,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在锐角△中,角所对应的边分别为,若,则角等于________.12.数列中,若,,则______;13.已知圆锥的轴截面是边长为2的正三角形,则这个圆锥的表面积等于______.14.下列关于函数与的命题中正确的结论是______.①它们互为反函数;②都是增函数;③都是周期函数;④都是奇函数.15.函数在内的单调递增区间为____.16.如图,在水平放置的边长为1的正方形中随机撤1000粒豆子,有400粒落到心形阴影部分上,据此估计心形阴影部分的面积为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)已知,,且、都是第二象限角,求的值.(2)求证:.18.在中,内角,,的对边分别为,,,已知,.(Ⅰ)求的值;(Ⅱ)若,求边的值.19.已知圆的半径是2,圆心在直线上,且圆与直线相切.(1)求圆的方程;(2)若点是圆上的动点,点在轴上,的最大值等于7,求点的坐标.20.已知数列中,,.(1)求证:是等差数列,并求的通项公式;(2)数列满足,求数列的前项和.21.在中,的对边分别为,已知.(1)求的值;(2)若的面积为,,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

通过向量平行得到的值,再利用和差公式计算【详解】向量=(2,tan),=(1,-1),∥故答案选B【点睛】本题考查了向量的平行,三角函数和差公式,意在考查学生的计算能力.2、B【解析】

直角利用待定系数法可得答案.【详解】因为S8=8a1+a82【点睛】本题主要考查等差数列的基本量的相关计算,难度不大.3、A【解析】

根据,,利用平方关系得到,再利用商数关系得到,最后用两和的正切求解.【详解】因为,,所以,所以,所以.故选:A【点睛】本题主要考查了同角三角函数基本关系式和两角和的正切公式,还考查了运算求解的能力,属于中档题.4、A【解析】

由题意利用直线的倾斜角和斜率求出tanα的值,再利用三角恒等变换,求出要求式子的值.【详解】直线3x-y+1=0的倾斜角为α,∴tanα=3,

∴,

故选A.【点睛】本题主要考查直线的倾斜角和斜率,三角恒等变换,属于中档题.5、A【解析】

根据当型循环结构,依次代入计算的值,即可得输出的表达式.【详解】根据循环结构程序框图可知,,,,…,,跳出循环体,所以结果为,故选:A.【点睛】本题考查了当型循环结构的应用,执行循环体计算输出值,属于基础题.6、A【解析】

设半径为,圆心角为,根据扇形面积公式,结合题中数据,即可求出结果.【详解】设半径为,圆心角为,则对应扇形面积,又,,则故选A.【点睛】本题主要考查由扇形面积求圆心角的问题,熟记扇形面积公式即可,属于常考题型.7、D【解析】

根据题意,求得,结合,即可求解,得到答案.【详解】由题意,正项等比数列满足,,即,,所以,又由,因为,所以.故选:D.【点睛】本题主要考查了的等比数列的通项公式,以及等比数列的前n项和公式的应用,其中解答中熟记等比数列的通项公式,以及等比数列的前n项和公式,合理运算是解答的关键,着重考查了推理与运算能力,属于基础题.8、C【解析】

由等比中项得:ab=4,目标式子变形为54【详解】∵a+1等号成立当且仅当a=b=2,∴原式的最小值为5.【点睛】利用基本不等式求最小值时,注意验证等号成立的条件.9、C【解析】

根据三角函数定义结合正弦的二倍角公式计算即可【详解】由题意,∴,,.故选:C.【点睛】本题考查三角函数的定义,考查二倍角的正弦公式,掌握三角函数定义是解题关键.10、D【解析】

由正弦定理化简已知,结合,可求,利用同角三角函数基本关系式可求,进而利用三角形的面积公式即可解得的值.【详解】解:,由正弦定理可得,,,即,,解得:或(舍去),的面积,解得.故选:.【点睛】本题主要考查了正弦定理,同角三角函数基本关系式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:利用正弦定理化简,得,因为,所以,因为为锐角,所以.考点:正弦定理的应用.【方法点晴】本题主要考查了正弦定理的应用、以及特殊角的三角函数值问题,其中解答中涉及到解三角形中的边角互化,转化为三角函数求值的应用,解答中熟练掌握正弦定理的变形,完成条件的边角互化是解答的关键,注重考查了分析问题和解答问题的能力,同时注意条件中锐角三角形,属于中档试题.12、【解析】

先分组求和得,再根据极限定义得结果.【详解】因为,,……,,所以则.【点睛】本题考查分组求和法、等比数列求和、以及数列极限,考查基本求解能力.13、【解析】

根据圆锥轴截面的定义结合正三角形的性质,可得圆锥底面半径长和高的大小,由此结合圆锥的表面积公式,能求出结果.【详解】∵圆锥的轴截面是正三角形,边长等于2∴圆锥的高,底面半径.∴这个圆锥的表面积:.故答案为.【点睛】本题给出圆锥轴截面的形状,求圆锥的表面积,着重考查了等边三角形的性质和圆锥的轴截面等基础知识,考查运算求解能力,是基础题.14、④【解析】

利用反函数,增减性,周期函数,奇偶性判断即可【详解】①,当时,的反函数是,故错误;②,当时,是增函数,故错误;③,不是周期函数,故错误;④,与都是奇函数,故正确故答案为④【点睛】本题考查正弦函数及其反函数的性质,熟记其基本性质是关键,是基础题15、【解析】

将函数进行化简为,求出其单调增区间再结合,可得结论.【详解】解:,递增区间为:,可得,在范围内单调递增区间为。故答案为:.【点睛】本题考查了正弦函数的单调区间,属于基础题。16、0.4【解析】

根据几何概型的计算,反求阴影部分的面积即可.【详解】设阴影部分的面积为,根据几何概型的概率计算公式:,解得.故答案为:.【点睛】本题考查几何概型的概率计算公式,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】

(1)利用同角三角函数间的关系式的应用,可求得cosα,sinβ,再利用两角差的正弦、余弦与正切公式即可求得cos(α﹣β)的值.(2)利用切化弦结合二倍角公式化简即可证明【详解】(1)∵sinα,cosβ,且α、β都是第二象限的角,∴cosα,sinβ,∴cos(α﹣β)=cosαcosβ+sinαsinβ;(2)得证【点睛】本题考查两角和与差的正弦、余弦与正切,考查同角三角函数间的关系式的应用,属于中档题.18、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)利用,,然后用正弦定理求解即可(Ⅱ)利用,然后利用余弦定理求解即可【详解】(Ⅰ)在中,由正弦定理,及,,可得.(Ⅱ)由及,可得,由余弦定理,即,可得.【点睛】本题考查正弦以及余弦定理的应用,属于基础题19、(1)或;(2)或.【解析】

(1)利用圆心在直线上设圆心坐标,利用相切列方程即可得解;(2)利用最大值为7确定圆,设点的坐标,找到到圆上点的最大距离列方程得解.【详解】解:(1)设圆心的坐标为,因为圆与直线相切,所以,即,解得或,故圆的方程为:,或;(2)由最大值等于可知,若圆的方程为,则的最小值为,故不故符合题意;所以圆的方程为:,设,则,的最大值为:,得,解得或.故点的坐标为或.【点睛】此题考查了圆方程的求法,点到圆上点的距离最值等,属于中档题.20、(1)证明见解析,(2)【解析】

(1)由,两边取倒数,得到,根据等差数列的定义证明等差数列,,再利用通项公式求得,从而得到..(2)根据(1)的结论,再用错位相减法求其前n项和.【详解】(1)因为,所以,即,所以是首项为1,公差为的等差数列,所以,即.(2)由(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论