吉林省长春八中2025届数学高一下期末质量跟踪监视试题含解析_第1页
吉林省长春八中2025届数学高一下期末质量跟踪监视试题含解析_第2页
吉林省长春八中2025届数学高一下期末质量跟踪监视试题含解析_第3页
吉林省长春八中2025届数学高一下期末质量跟踪监视试题含解析_第4页
吉林省长春八中2025届数学高一下期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省长春八中2025届数学高一下期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数的图象向右平移个单位长度,所得图象对应的函数解析式是A. B. C. D.2.已知函数的值域为,且图像在同一周期内过两点,则的值分别为()A. B.C. D.3.半圆的直径,为圆心,是半圆上不同于的任意一点,若为半径上的动点,则的最小值是()A.2 B.0 C.-2 D.44.图1是我国古代数学家赵爽创制的一幅“勾股圆方图”(又称“赵爽弦图”),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.受其启发,某同学设计了一个图形,它是由三个全等的钝角三角形与中间一个小正三角形拼成一个大正三角形,如图2所示,若,,则线段的长为()A.3 B.3.5 C.4 D.4.55.在边长为2的菱形中,,是的中点,则A. B. C. D.6.若两个正实数,满足,且不等式有解,则实数的取值范围是()A. B. C. D.7.圆关于直线对称的圆的方程为()A. B.C. D.8.在中,,,,点P是内(包括边界)的一动点,且(),则的最大值为()A.6 B. C. D.69.已知向量,,则与的夹角为()A. B. C. D.10.在中,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列,的前项和分别为,,若,则______.12.把一枚质地均匀的硬币先后抛掷两次,两次都是正面向上的概率为________.13.设,则的值是____.14.设数列满足,,,,______.15.如图,,分别为的中线和角平分线,点P是与的交点,若,,则的面积为______.16.已知函数,该函数零点的个数为_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知正项数列的前项和为,对任意,点都在函数的图象上.(1)求数列的通项公式;(2)若数列,求数列的前项和;(3)已知数列满足,若对任意,存在使得成立,求实数的取值范围.18.已知角的顶点在原点,始边与轴的非负半轴重合,终边上一点的坐标是.(1)求;(2)求;19.已知函数,且.(1)求的值;(2)若在上有且只有一个零点,,求的取值范围.20.在平面直角坐标系中,直线截以坐标原点为圆心的圆所得的弦长为.(1)求圆的方程;(2)若直线与圆切于第一象限,且与坐标轴交于点,,当时,求直线的方程;(3)设,是圆上任意两点,点关于轴的对称点为,若直线,分别交轴于点和,问是否为定值?若是,请求出该定值;若不是,请说明理由.21.如图,四面体中,,,为的中点.(1)证明:;(2)已知是边长为2正三角形.(Ⅰ)若为棱的中点,求的大小;(Ⅱ)若为线段上的点,且,求四面体的体积的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

利用三角函数图像平移原则,结合诱导公式,即可求解.【详解】函数的图象向右平移个单位长度得到.故选B.【点睛】本题考查三角图像变换,诱导公式,熟记变换原则,准确计算是关键,是基础题.2、C【解析】

先利用可求出的值,再利用、两点横坐标之差的绝对值为周期的一半,计算出周期,再由可计算出的值,从而可得出答案.【详解】由题意可知,,、两点横坐标之差的绝对值为周期的一半,则,,因此,,,故选C.【点睛】本题考查三角函数的解析式的求解,求解步骤如下:(1)求、:,;(2)求:根据题中信息求出最小正周期,利用公式求出的值;(3)求:将对称中心点和最高、最低点的坐标代入函数解析式,若选择对称中心点,还要注意函数在该点附近的单调性.3、C【解析】

将转化为,利用向量数量积运算化简,然后利用基本不等式求得表达式的最小值.【详解】画出图像如下图所示,,等号在,即为的中点时成立.故选C.【点睛】本小题主要考查平面向量加法运算,考查平面向量的数量积运算,考查利用基本不等式求最值,属于中档题.4、A【解析】

设,可得,求得,在中,运用余弦定理,解方程可得所求值.【详解】设,可得,且,在中,可得,即为,化为,解得舍去),故选.【点睛】本题考查三角形的余弦定理,考查方程思想和运算能力,属于基础题.5、D【解析】

选取向量为基底,用基底表示,然后计算.【详解】由题意,,.故选D.【点睛】本题考查向量的数量积,平面向量的线性运算,解题关键是选取基底,把向量用基底表示.6、D【解析】

利用基本不等式求得的最小值,根据不等式存在性问题,解一元二次不等式求得的取值范围.【详解】由于,而不等式有解,所以,即,解得或.故选:D【点睛】本小题主要考查利用基本不等式求最小值,考查不等式存在性问题的求解,考查一元二次不等式的解法,属于中档题.7、B【解析】

设圆心关于直线对称的圆的圆心为,则由,求出的值,可得对称圆的方程.【详解】圆的圆心为,半径,则不妨设圆关于直线对称的圆的圆心为,半径为,则由,解得,故所求圆的方程为.故选:B【点睛】本题考查了圆的标准方程、中点坐标公式,需熟记圆的标准形式,属于基础题.8、B【解析】

利用余弦定理和勾股定理可证得;取,作,根据平面向量平行四边形法则可知点轨迹为线段,由此可确定,利用勾股定理可求得结果.【详解】由余弦定理得:如图,取,作,交于在内(包含边界)点轨迹为线段当与重合时,最大,即故选:【点睛】本题考查向量模长最值的求解问题,涉及到余弦定理解三角形的应用;解题关键是能够根据平面向量线性运算确定动点轨迹,根据轨迹确定最值点.9、D【解析】

利用夹角公式计算出两个向量夹角的余弦值,进而求得两个向量的夹角.【详解】设两个向量的夹角为,则,故.故选:D.【点睛】本小题主要考查两个向量夹角的计算,考查向量数量积和模的坐标表示,属于基础题.10、B【解析】

根据向量的三角形法则进行转化求解即可.【详解】∵,∴,又则故选:B【点睛】本题考查向量加减混合运算及其几何意义,灵活应用向量运算的三角形法则即可求解,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用等差数列的性质以及等差数列奇数项之和与中间项的关系进行化简求解.【详解】因为是等差数列,所以,又因为为等差数列,所以,故.【点睛】(1)在等差数列中,若,则有;(2)在等差数列.12、【解析】

把一枚质地均匀的硬币先后抛掷两次,利用列举法求出基本事件有4个,由此能求出两次都是正面向上的概率.【详解】把一枚质地均匀的硬币先后抛掷两次,基本事件有4个,分别为:正正,正反,反正,反反,两次都是正面向上的概率为.故答案为:.【点睛】本题考查古典概型的概率计算,求解时注意列举法的应用,即列举出所有等可能结果.13、【解析】

根据二倍角公式得出,再根据诱导公式即可得解.【详解】解:由题意知:故,即.故答案为.【点睛】本题考查了二倍角公式和诱导公式的应用,属于基础题.14、8073【解析】

对分奇偶讨论求解即可【详解】当为偶数时,当为奇数时,故当为奇数时,故故答案为8073【点睛】本题考查数列递推关系,考查分析推理能力,对分奇偶讨论发现规律是解决本题的关键,是难题15、【解析】

设,,求点的坐标,运用换元法,求直线方程,再解出交点的坐标,再利用向量数量积运算求出,最后结合三角形面积公式求解即可.【详解】解:由,可设,,则,设,则,直线的方程为,直线的方程为,联立直线、方程解得,则,,可得,解得:,即,即,所以,故答案为:.【点睛】本题考查了向量的数量积运算,重点考查了两直线的交点坐标及三角形面积公式,属中档题.16、3【解析】

令,可得或;当时,可解得为函数一个零点;当时,可知,根据的范围可求得零点;综合两种情况可得零点总个数.【详解】令,可得:或当时,或(舍)为函数的一个零点当时,,,为函数的零点综上所述,该函数的零点个数为:个本题正确结果:【点睛】本题考查函数零点个数的求解,关键是能够将问题转化为方程根的个数的求解,涉及到余弦函数零点的求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】

(1)将点代入函数的解析式得到,令,由可求出的值,令,由得,两式相减得出数列为等比数列,确定该数列的公比,利用等比数列的通项公式可求出数列的通项公式;(2)求出数列的通项公式,利用错位相减法求出数列的前项和;(3)利用分组求和法与裂项法求出数列的前项和,由题意得出,判断出数列各项的符号,得出数列的最大值为,利用函数的单调性得出该函数在区间上的最大值为,然后解不等式可得出实数的取值范围.【详解】(1)将点代入函数的解析式得到.当时,,即,解得;当时,由得,上述两式相减得,得,即.所以,数列是以为首项,以为公比的等比数列,因此,;(2),,因此,①,②由①②得,所以;(3).令为的前项和,则.因为,,,,当时,,令,,令,则,当时,,此时,数列为单调递减数列,,则,即,那么当时,数列为单调递减数列,此时,则.因此,数列的最大值为.又,函数单调递增,此时,函数的最大值为.因为对任意的,存在,.所以,解得,因此,实数的取值范围是.【点睛】本题考查利用等比数列前项和求数列通项,同时也考查了错位相减法求和以及数列不等式恒成立问题,解题时要充分利用数列的单调性求出数列的最大项或最小项的值,考查化归与转化思想的应用,属于难题.18、(1),(2)【解析】

(1)求得点到原点的距离,根据三角函数的定义求值;(2)同(1)可求出,然后用诱导公式化简,再代入值计算.【详解】(1)(2),为第四象限,【点睛】本题考查三角函数的定义,考查诱导公式,属于基础题.19、(1)(2)【解析】

(1)利用降次公式、辅助角公式化简表达式,利用求得的值.(2)令,结合的取值范围以及三角函数的零点列不等式,解不等式求得的取值范围.【详解】(1),,,即.(2)令,则,,,在上有且只有一个零点,,,的取值范围为.【点睛】本小题主要考查三角恒等变换,考查三角函数零点问题,考查化归与转化的数学思想方法,属于基础题.20、(1);(2);(3)见解析【解析】

(1)利用点到直线距离公式,可以求出弦心距,根据垂径定理结合勾股定理,可以求出圆的半径,进而可以求出圆的方程;(2)设出直线的截距式方程,利用圆的切线性质,得到一个方程,结合已知,又得到一个方程,两个方程联立,解方程组,即可求出直线直线的方程;(3)设,,则,,,分别求出直线与轴交点坐标、直线与轴交点坐标,求出的表达式,通过计算可得.【详解】(1)因为点到直线的距离为,所以圆的半径为,故圆的方程为.(2)设直线的方程为,即,由直线与圆相切,得,①.②由①②解得,此时直线的方程为.(3)设,,则,,,直线与轴交点坐标为,,直线与轴交点坐标为,,,为定值2.【点睛】本题考查了圆的垂径定理、圆的切线性质、勾股定理,考查了求直线方程,考查了数学运算能力.21、(1)证明见解析;(2)(Ⅰ);(Ⅱ)【解析】

(1)取中点,连接,通过证明,证得平面,由此证得.(2)(I)通过证明,证得平面,由此证得,利用“直斜边的中线等于斜边的一半”这个定理及其逆定理,证得.(II)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论