哈三中2025届高一数学第二学期期末质量检测模拟试题含解析_第1页
哈三中2025届高一数学第二学期期末质量检测模拟试题含解析_第2页
哈三中2025届高一数学第二学期期末质量检测模拟试题含解析_第3页
哈三中2025届高一数学第二学期期末质量检测模拟试题含解析_第4页
哈三中2025届高一数学第二学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

哈三中2025届高一数学第二学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角A,B,C所对的边分别为a,b,c,若,,则是()A.纯角三角形 B.等边三角形C.直角三角形 D.等腰直角三角形2.长方体中,已知,,棱在平面内,则长方体在平面内的射影所构成的图形面积的取值范围是()A. B. C. D.3.点是角终边上一点,则的值为()A. B. C. D.4.已知函数满足下列条件:①定义域为;②当时;③.若关于x的方程恰有3个实数解,则实数k的取值范围是A. B. C. D.5.函数的图象可能是().A. B. C. D.6.三棱锥的高,若,二面角为,为的重心,则的长为()A. B. C. D.7.若,则下列正确的是()A. B.C. D.8.在正方体中,与所成的角为()A.30° B.90° C.60° D.120°9.设为所在平面内一点,若,则下列关系中正确的是()A. B.C. D.10.已知点,,则与向量的方向相反的单位向量是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列从第项起每项都是它前面各项的和,且,则的通项公式是__________.12.函数的定义域为____________.13.将边长为1的正方形(及其内部)绕旋转一周形成圆柱,点、分别是圆和圆上的点,长为,长为,且与在平面的同侧,则与所成角的大小为______.14.直线与的交点坐标为________.15.已知角的终边经过点,则的值为__________.16.函数的最小正周期是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知以点(a∈R,且a≠0)为圆心的圆过坐标原点O,且与x轴交于点A,与y轴交于点B.(1)求△OAB的面积;(2)设直线l:y=﹣2x+4与圆C交于点P、Q,若|OP|=|OQ|,求圆心C到直线l的距离.18.已知函数f(x)=asin(x)(a>0)在同一半周期内的图象过点O,P,Q,其中O为坐标原点,P为函数f(x)的最高点,Q为函数f(x)的图象与x轴的正半轴的交点,△OPQ为等腰直角三角形.(1)求a的值;(2)将△OPQ绕原点O按逆时针方向旋转角α(0<α),得到△OP′Q′,若点P′恰好落在曲线y(x>0)上(如图所示),试判断点Q′是否也落在曲线y(x>0),并说明理由.19.已知函数.(1)求证函数在上是单调减函数.(2)求函数在上的值域.20.如图,在四棱锥P−ABCD中,AB//CD,且.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,,求二面角A−PB−C的余弦值.21.已知函数当时,求函数的最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

利用正弦定理结合条件,得到,再由,结合余弦定理,得到,从而得到答案.【详解】在中,由正弦定理得,而,所以得到,即,为的内角,所以,因为,所以,由余弦定理得.为的内角,所以,所以,为等边三角形.故选:B.【点睛】本题考查正弦定理和余弦定理判断三角形形状,属于简单题.2、A【解析】

本题等价于求过BC直线的平面截长方体的面积的取值范围。【详解】长方体在平面内的射影所构成的图形面积的取值范围等价于,求过BC直线的平面截长方体的面积的取值范围。由图形知,,故选A.【点睛】将问题等价转换为可视的问题。3、A【解析】

利用三角函数的定义求出的值,然后利用诱导公式可求出的值.【详解】由三角函数的定义可得,由诱导公式可得.故选A.【点睛】本题考查三角函数的定义,同时也考查了利用诱导公式求值,在利用诱导公式求值时,充分理解“奇变偶不变,符号看象限”这个规律,考查计算能力,属于基础题.4、D【解析】

分析:先根据条件确定函数图像,再根据过定点(1,0)的直线与图像关系确定实数k的取值范围.详解:因为,当时;所以可作函数在上图像,如图,而直线过定点A(1,0),根据图像可得恰有3个实数解时实数k的取值范围为,选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.5、D【解析】

首先判断函数的奇偶性,排除选项,再根据特殊区间时,判断选项.【详解】是偶函数,是奇函数,是奇函数,函数图象关于原点对称,故排除A,B,当时,,,排除C.故选D.【点睛】本题考查根据函数解析式判断函数图象,一般从函数的定义域确定函数的位置,从函数的值域确定图象的上下位置,也可判断函数的奇偶性,排除图象,或是根据函数的单调性,特征值,以及函数值的正负,是否有极值点等函数性质判断选项.6、C【解析】

根据AB=AC,取BC的中点E,连结AE,得到AE⊥BC,再由由AH⊥平面BCD,得到EH⊥BC.,所以∠GEH是二面角的平面角,然后在△GHE中,利用余弦定理求解.【详解】:如图所示:取BC的中点E,连结AE,∵AB=AC,∴AE⊥BC,且点G在中线AE上,连结HE.∵AH⊥平面BCD,∴EH⊥BC.∴∠GEH=60°.在Rt△AHE中,∵∠AEH=60°,AH=∴EH=AHtan30°=3,AE=6,GE=AE=2由余弦定理得HG2=9+4-2×3×2cos60°=7.∴HG=故选:C【点睛】本题主要考查了二面角问题,还考查了空间想象和推理论证的能力,属于中档题.7、D【解析】

由不等式的性质对四个选项逐一判断,即可得出正确选项,错误的选项可以采用特值法进行排除.【详解】A选项不正确,因为若,,则不成立;B选项不正确,若时就不成立;C选项不正确,同B,时就不成立;D选项正确,因为不等式的两边加上或者减去同一个数,不等号的方向不变,故选D.【点睛】本题主要考查不等关系和不等式的基本性质,求解的关键是熟练掌握不等式的运算性质.8、C【解析】

把异面直线与所成的角,转化为相交直线与所成的角,利用为正三角形,即可求解.【详解】连结,则,所以相交直线与所成的角,即为异面直线与所成的角,连结,则是正三角形,所以,即异面直线与所成的角,故选C.【点睛】本题主要考查了空间中异面直线及其所成角的求法,其中根据异面直线的定义,把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.9、A【解析】

∵∴−=3(−);∴=−.故选A.10、A【解析】

根据单位向量的定义即可求解.【详解】,向量的方向相反的单位向量为,故选A.【点睛】本题主要考查了向量的坐标运算,向量的单位向量的概念,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

列举,可找到是从第项起的等比数列,由首项和公比即可得出通项公式.【详解】解:,即,所以是从第项起首项,公比的等比数列.通项公式为:故答案为:【点睛】本题考查数列的通项公式,可根据递推公式求出.12、【解析】

先将和分别解出来,然后求交集即可【详解】要使,则有且由得由得因为所以原函数的定义域为故答案为:【点睛】解三角不等式的方法:1.在单位圆中利用三角函数线,2.利用三角函数的图像13、【解析】

画出几何体示意图,将平移至于直线相交,在三角形中求解角度.【详解】根据题意,过B点作BH//交弧于点H,作图如下:因为BH//,故即为所求异面直线的夹角,在中,,在中,因为,故该三角形为等边三角形,即:,在中,,,且母线BH垂直于底面,故:,又异面直线夹角范围为,故,故答案为:.【点睛】本题考查异面直线的夹角求解,一般解决方法为平移至直线相交,在三角形中求角.14、【解析】

直接联立方程得到答案.【详解】联立方程解得即两直线的交点坐标为.故答案为【点睛】本题考查了两直线的交点,属于简单题.15、【解析】按三角函数的定义,有.16、【解析】

根据周期公式即可求解.【详解】函数的最小正周期故答案为:【点睛】本题主要考查了正弦型函数的周期,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)4(2)【解析】

(1)求得圆的半径,设出圆的标准方程,由此求得两点坐标,进而求得三角形的面积.(2)根据,判断出,由直线的斜率求得直线的斜率,以此列方程求得,根据直线和圆相交,圆心到直线的距离小于半径,确定,同时得到圆心到直线的距离.【详解】(1)根据题意,以点(a∈R,且a≠0)为圆心的圆过坐标原点O,设圆C的半径为r,则r2=a2,圆C的方程为(x﹣a)2+(y)2=a2,令x=0可得:y=0或,则B(0,),令y=0可得:x=0或2a,则A(2a,0),△OAB的面积S|2a|×||=4;(2)根据题意,直线l:y=﹣2x+4与圆C交于点P、Q,则|CP|=|CQ|,又由|OP|=|OQ|,则直线OC与PQ垂直,又由直线l即PQ的方程为y=﹣2x+4,则KOC,解可得a=±2,当a=2时,圆心C的坐标为(2,1),圆心到直线l的距离d,r,r>d,此时直线l与圆相交,符合题意;当a=2时,圆心C的坐标为(﹣2,﹣1),圆心到直线l的距离d,r,r<d,此时直线l与圆相离,不符合题意;故圆心C到直线l的距离d.【点睛】本小题主要考查圆的标准方程,考查直线和圆的位置关系,考查两条直线的位置关系,考查运算求解能力,属于中档题.18、(1)2;(2)见解析.【解析】

(1)由已知利用周期公式可求最小正周期T=8,由题意可求Q坐标为(1,0).P坐标为(2,a),结合△OPQ为等腰直角三角形,即可得解a的值.(2)由(Ⅰ)知,|OP|=2,|OQ|=1,可求点P′,Q′的坐标,由点P′在曲线y(x>0)上,利用倍角公式,诱导公式可求cos2,又结合0<α,可求sin2α的值,由于1cosα•1sinα=8sin2α=23,即可证明点Q′不落在曲线y(x>0)上.【详解】(Ⅰ)因为函数f(x)=asin(x)(a>0)的最小正周期T8,所以函数f(x)的半周期为1,所以|OQ|=1.即有Q坐标为(1,0).又因为P为函数f(x)图象的最高点,所以点P坐标为(2,a),又因为△OPQ为等腰直角三角形,所以a2.(Ⅱ)点Q′不落在曲线y(x>0)上.理由如下:由(Ⅰ)知,|OP|=2,|OQ|=1,所以点P′,Q′的坐标分别为(2cos(),2sin()),(1cosα,1sinα),因为点P′在曲线y(x>0)上,所以3=8cos()sin()=1sin(2)=1cos2α,即cos2,又0<α,所以sin2α.又1cosα•1sinα=8sin2α=823.所以点Q′不落在曲线y(x>0)上.19、(1)证明见解析(2)【解析】

(1)直接用定义法证明函数的单调性.

(2)利用(1)的单调性结论可求函数在上的值域【详解】(1)证明:任取,且则由,且,则,所以所以所以函数在上是单调减函数.(2)由(1)可得函数在上单调减函数所以,即所以函数在上的值域为:.【点睛】本题考查利用定义法证明函数的单调性和结合函数单调性求函数的值域.属于基础题.20、(1)见解析;(2).【解析】

(1)由已知,得AB⊥AP,CD⊥PD.由于AB//CD,故AB⊥PD,从而AB⊥平面PAD.又AB平面PAB,所以平面PAB⊥平面PAD.(2)在平面内作,垂足为,由(1)可知,平面,故,可得平面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)及已知可得,,,.所以,,,.设是平面的法向量,则即可取.设是平面的法向量,则即可取.则,所以二面角的余弦值为.【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论