版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省唐山开滦一中2024届高一数学第二学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,若,则角的大小为()A. B. C. D.2.如图,正方形的边长为2cm,它是水平放置的一个平面图形的直观图,则原平面图形的周长是()cm.A.12 B.16 C. D.3.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为()A.0.35 B.0.25 C.0.20 D.0.154.设,,,则,,的大小关系是()A. B. C. D.5.若,,则()A. B. C. D.6.若,则下列不等式恒成立的是()A. B. C. D.7.已知函数,将的图象上的所有点的横坐标缩短到原来的,纵坐标保持不变;再把所得图象向上平移个单位长度,得到函数的图象,若,则的值可能为()A. B. C. D.8.袋中共有完全相同的4只小球,编号为1,2,3,4,现从中任取2只小球,则取出的2只球编号之和是偶数的概率为()A. B. C. D.9.中,,,,则的面积等于()A. B. C.或 D.或10.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若扇形的周长是,圆心角是度,则扇形的面积(单位)是__________.12.已知,,且,若恒成立,则实数的取值范围是____.13.已知数列满足则的最小值为__________.14.若一个圆柱的侧面展开图是边长为2的正方形,则此圆柱的体积为.15.函数,的图象与直线y=k有且仅有两个不同的交点,则k的取值范围是_____.16.计算:=_______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,已知圆过坐标原点且圆心在曲线上.(1)若圆分别与轴、轴交于点、(不同于原点),求证:的面积为定值;(2)设直线与圆交于不同的两点、,且,求圆的方程;(3)设直线与(2)中所求圆交于点、,为直线上的动点,直线、与圆的另一个交点分别为、,求证:直线过定点.18.数列中,,,.(1)证明:数列是等比数列.(2)若,,且,求的值.19.从代号为A、B、C、D、E的5个人中任选2人(1)列出所有可能的结果;(2)若A、B、C三人为男性,D、E两人为女性,求选出的2人中不全为男性的概率.20.已知等比数列的前项和为,公比,,.(1)求等比数列的通项公式;(2)设,求的前项和.21.已知是圆的直径,垂直圆所在的平面,是圆上任一点.求证:平面⊥平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由平面向量数量积的定义得出、与的等量关系,再由并代入、与的等量关系式求出的值,从而得出的大小.【详解】,,,由正弦定理边角互化思想得,,,同理得,,,则,解得,中至少有两个锐角,且,,所以,,,因此,,故选D.【点睛】本题考查平面向量的数量积的计算,考查利用正弦定理、两角和的正切公式求角的值,解题的关键就是利用三角恒等变换思想将问题转化为正切来进行计算,属于中等题.2、B【解析】
根据直观图与原图形的关系,可知原图形为平行四边形,结合线段关系即可求解.【详解】根据直观图,可知原图形为平行四边形,因为正方形的边长为2cm,所以原图形cm,,则,所以原平面图形的周长为,故选:B.【点睛】本题考查了平面图形直观图与原图形的关系,由直观图求原图形面积方法,属于基础题.3、B【解析】
已知三次投篮共有20种,再得到恰有两次命中的事件的种数,然后利用古典概型的概率公式求解.【详解】三次投篮共有20种,恰有两次命中的事件有:191,271,932,812,393,有5种∴该运动员三次投篮恰有两次命中的概率为故选:B【点睛】本题主要考古典概型的概率求法,还考查了运算求解的能力,属于基础题.4、D【解析】
首先确定题中,,的取值范围,再根据大小排序即可.【详解】由题知,,,,所以排序得到.故选:D.【点睛】本题主要考查了比较指数对数的大小问题,属于基础题.5、D【解析】
由于,,,,利用“平方关系”可得,,变形即可得出.【详解】∵,,∴,∴.∵,∴,∵,∴.∴.故选D.【点睛】本题考查了两角和的余弦公式、三角函数同角基本关系式、拆分角等基础知识与基本技能方法,属于中档题.6、D【解析】
利用不等式的性质、对数、指数函数的图像和性质,对每一个选项逐一分析判断得解.【详解】对于选项A,不一定成立,如a=1>b=-2,但是,所以该选项是错误的;对于选项B,所以该选项是错误的;对于选项C,ab符号不确定,所以不一定成立,所以该选项是错误的;对于选项D,因为a>b,所以,所以该选项是正确的.故选D【点睛】本题主要考查不等式的性质,考查对数、指数函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.7、C【解析】
利用二倍角公式与辅助角公式将函数的解析式化简,然后利用图象变换规律得出函数的解析式为,可得函数的值域为,结合条件,可得出、均为函数的最大值,于是得出为函数最小正周期的整数倍,由此可得出正确选项.【详解】函数,将函数的图象上的所有点的横坐标缩短到原来的倍,得的图象;再把所得图象向上平移个单位,得函数的图象,易知函数的值域为.若,则且,均为函数的最大值,由,解得;其中、是三角函数最高点的横坐标,的值为函数的最小正周期的整数倍,且.故选C.【点睛】本题考查三角函数图象变换,同时也考查了正弦型函数与周期相关的问题,解题的关键在于确定、均为函数的最大值,考查分析问题和解决问题的能力,属于中等题.8、C【解析】
先求出在编号为1,2,3,4的小球中任取2只小球的不同取法,再求出取出的2只球编号之和是偶数的不同取法,然后求概率即可得解.【详解】解:在编号为1,2,3,4的小球中任取2只小球,则有共6种取法,则取出的2只球编号之和是偶数的有共2种取法,即取出的2只球编号之和是偶数的概率为,故选:C.【点睛】本题考查了古典型概率公式,属基础题.9、D【解析】
先根据余弦定理求AC,再根据面积公式得结果.【详解】因为,所以或2,因此的面积等于或等于,选D.【点睛】本题考查余弦定理与三角形面积公式,考查基本求解能力,属基础题.10、C【解析】
根据正四棱柱的底面是正方形,高为4,体积为16,求得底面正方形的边长,再求出其对角线长,然后根据正四棱柱的体对角线是外接球的直径可得球的半径,再根据球的表面积公式可求得.【详解】依题意正四棱柱的体对角线是其外接球的直径,的中点是球心,如图:依题意设,则正四棱柱的体积为:,解得,所以外接球的直径,所以外接球的半径,则这个球的表面积是.故选C.【点睛】本题考查了球与正四棱柱的组合体,球的表面积公式,正四棱柱的体积公式,属中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、16【解析】
根据已知条件可计算出扇形的半径,然后根据面积公式即可计算出扇形的面积.【详解】设扇形的半径为,圆心角弧度数为,所以即,所以,所以.故答案为:.【点睛】本题考查角度与弧度的转化以及扇形的弧长和面积公式,难度较易.扇形的弧长公式:,扇形的面积公式:.12、(-4,2)【解析】试题分析:因为当且仅当时取等号,所以考点:基本不等式求最值13、【解析】
先利用累加法求出an=1+n2﹣n,所以,设f(n),由此能导出n=5或6时f(n)有最小值.借此能得到的最小值.【详解】解:∵an+1﹣an=2n,∴当n≥2时,an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+1=n2﹣n+1且对n=1也适合,所以an=n2﹣n+1.从而设f(n),令f′(n),则f(n)在上是单调递增,在上是递减的,因为n∈N+,所以当n=5或6时f(n)有最小值.又因为,,所以的最小值为故答案为【点睛】本题考查了利用递推公式求数列的通项公式,考查了累加法.还考查函数的思想,构造函数利用导数判断函数单调性.14、2【解析】试题分析:设圆柱的底面半径为r,高为h,底面积为S,体积为V,则有2πr=2⇒r=1π,故底面面积S=πr考点:圆柱的体积15、【解析】
作出其图像,可只有两个交点时k的范围为.故答案为16、【解析】试题分析:考点:两角和的正切公式点评:本题主要考查两角和的正切公式变形的运用,抓住和角是特殊角,是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2);(3)证明见解析.【解析】
(1)由题意设圆心坐标为,可得半径为,求出圆的方程,分别令、,可得出点、的坐标,利用三角形的面积公式即可证明出结论成立;(2)由,知,利用两直线垂直的等价条件:斜率之积为,解方程可得,讨论的取值,求得圆心到直线的距离,即可得到所求圆的方程;(3)设,、,求得、的坐标,以及直线、的方程,联立圆的方程,利用韦达定理,结合,得出,设直线的方程为,代入圆的方程,利用韦达定理,可得、之间的关系,即可得出所求的定点.【详解】(1)由题意可设圆心为,则圆的半径为,则圆的方程为,即.令,得,得;令,得,得.(定值);(2)由,知,所以,解得.当时,圆心到直线的距离小于半径,符合题意;当时,圆心到直线的距离大于半径,不符合题意.所以,所求圆的方程为;(3)设,,,又知,,所以,.因为,所以.将,代入上式,整理得.①设直线的方程为,代入,整理得.所以,.代入①式,并整理得,即,解得或.当时,直线的方程为,过定点;当时,直线的方程为,过定点检验定点和、共线,不合题意,舍去.故过定点.【点睛】本题考查圆的方程的求法和运用,注意运用联立直线方程和圆的方程,消去一个未知数,运用韦达定理,考查直线恒过定点的求法,考查运算能力,属于难题.18、(1)见解析(2)9或35或133【解析】
(1)分别写出和,做商,再用表示出,代入即可得q,由可得,得证;(2)由(1)得数列的通项公式,代入并整理,根据即得m+n的值。【详解】(1)证明:因为,所以,所以.因为,所以,所以.因为,所以.故数列是以2为首项,为公比的等比数列.(2)解:由(1)可得.因为,所以,整理得,则.因为,,所以,则的值为2或4或6.当时,,,符合题意,则;当时,,,符合题意,则;当时,,,符合题意,则.综上,的值为9或35或133.【点睛】本题考查求数列通项公式和已知通项公式求参数的和,解题关键在于细心验证m取值是否满足题干要求。19、(1)见解析(2)0.7【解析】
(1)从代号为、、、、的5个人中任选2人,利用列举法能求出所有可能的结果.(2)、、三人为男性,、两人为女性,利用列举法求出选出的2人中不全为男性包含的基本事件有7种,由此能求出选出的2人中不全为男性的概率.【详解】(1)从代号为、、、、的5个人中任选2人.所有可能的结果有10种,分别为:,,,,,,,,,.(2)、、三人为男性,、两人为女性,选出的2人中不全为男性包含的基本事件有7种,分别为:,,,,,,.选出的2人中不全为男性的概率.【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.20、(1)(2)【解析】
(1)将已知两式作差,利用等比数列的通项公式,可得公比,由等比数列的求和可得首项,进而得到所求通项公式;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度授权委托合同2篇
- 二零二四年度办公场所租赁合同样本2篇
- 二零二四年度人工智能算法研发合作合同3篇
- 二零二四年度广告投放与创意设计服务合同3篇
- 2024年度房产买卖及法律咨询服务合同
- 全新教育培训机构合作经营合同(2024年度)
- 2024年度智慧物流系统开发与部署合同2篇
- 二零二四年度新材料研发与产业化合同(新材料应用)3篇
- 2024年度企业级软件系统定制开发合同2篇
- 2024年度信息服务与技术支持合同2篇
- 2025届高考语文复习:时事新闻类作文破题+课件
- 北京能源集团有限责任公司招聘笔试题库2024
- 专题21.1 二次根式的概念及性质(基础检测)(解析版)
- 牛津译林版英语2024七年级上册全册单元知识清单(默写版)
- GB/T 18457-2024制造医疗器械用不锈钢针管要求和试验方法
- 课件:《中华民族共同体概论》第五讲 大一统与中华民族共同体初步形成(秦汉时期)
- 《经济法》第四章-公司法律制度教案
- 2024年军队文职统一考试《专业科目》管理学试卷(网友回忆版)含解析
- TSTIC 120082-2023 建筑产业电商平台服务规范
- 2024至2030年中国人工智能行业发展战略规划及投资机会预测报告
- (新版)高级缝纫工职业鉴定考试题库(含答案)
评论
0/150
提交评论