版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省广州市天河区2023-2024学年高一数学第二学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.得到函数的图象,只需将的图象()A.向左移动 B.向右移动 C.向左移动 D.向右移动2.在△中,角,,所对的边分别为,,,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件3.用分层抽样的方法从10盆红花和5盆蓝花中选出3盆,则所选红花和蓝花的盆数分别为A.2,1 B.1,2 C.0,3 D.3,04.设,,,则的最小值为()A.2 B.4 C. D.5.在正方体中,分别是线段的中点,则下列判断错误的是()A.与垂直 B.与垂直C.与平行 D.与平行6.已知函数在区间(1,2)上是增函数,则实数a的取值范围是()A.(0,+∞) B.(0,1) C.(0,1] D.(﹣1,0)7.长方体中,已知,,棱在平面内,则长方体在平面内的射影所构成的图形面积的取值范围是()A. B. C. D.8.已知向量,若,则的最小值为().A.12 B. C.16 D.9.等差数列中,已知,且公差,则其前项和取最小值时的的值为()A.6 B.7 C.8 D.910.如图,测量河对岸的塔高时,选与塔底B在同一水平面内的两个测点C与D.现测得,,,并在点C测得塔顶A的仰角为,则塔高为()A. B. C.60m D.20m二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的终边上一点P落在直线上,则______.12.已知无穷等比数列的所有项的和为,则首项的取值范围为_____________.13.实数2和8的等比中项是__________.14.若(),则_______(结果用反三角函数值表示).15.已知数列的前项和,那么数列的通项公式为__________.16.已知函数是定义域为的偶函数.当时,,关于的方程,有且仅有5个不同实数根,则实数的取值范围是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,.(1)当时,求的值;(2)设函数,已知在中,内角、、的对边分别为、、,若,,,求的取值范围.18.已知是的内角,分别是角的对边.若,(1)求角的大小;(2)若,的面积为,为的中点,求19.已知等差数列an满足a3=5,a6=a4(1)求数列an,b(2)设cn=anbn220.一扇形的周长为20,当扇形的圆心角等于多少时,这个扇形的面积最大?最大面积是多少?21.已知各项为正数的数列满足:且.(1)证明:数列为等差数列.(2)若,证明:对一切正整数n,都有
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
直接利用三角函数图象的平移变换法则,对选项中的变换逐一判断即可.【详解】函数的图象,向左平移个单位,得,错;函数的图象,向右平移个单位,得,对.函数的图象,向左平移个单位,得,错;函数的图象,向右平移个单位,得,错,故选B.【点睛】本题考查了三角函数的图象,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.2、C【解析】
由正弦定理分别检验问题的充分性和必要性,可得答案.【详解】解:充分性:在△中,由,可得,所以,故充分性成立;必要性:在△中,由及正弦定理,可得,可得,,故,必要性成立;故可得:在△中,角,,所对的边分别为,,,则“”是“”的充分必要条件,故选C.【点睛】本题主要考查充分条件、必要条件的判断,相对不难,注意正弦定理的灵活运用.3、A【解析】
利用分层抽样的性质直接求解.【详解】解:用分层抽样的方法从10盆红花和5盆蓝花中选出3盆,则所选红花的盆数为:,所选蓝花的盆数为:.故选:A.【点睛】本题考查所选红花和蓝花的盆数的求法,考查分层抽样的性质等基础知识,考查运算求解能力,是基础题.4、D【解析】
利用基本不等式可得,再结合代入即可得出答案.【详解】解:∵,,,∴,∴,当且仅当即,时等号成立,∴,故选:D.【点睛】本题主要考查基本不等式求最值,要注意条件“一正二定三相等”,属于中档题.5、D【解析】
利用数形结合,逐一判断,可得结果.【详解】如图由分别是线段的中点所以//A选项正确,因为,所以B选项正确,由,所以C选项正确D选项错误,由//,而与相交,所以可知,异面故选:D【点睛】本题主要考查空间中直线与直线的位置关系,属基础题.6、C【解析】
由题意可得在上为减函数,列出不等式组,由此解得的范围.【详解】∵函数在区间上是增函数,∴函数在上为减函数,其对称轴为,∴可得,解得.故选:C.【点睛】本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于基础题.7、A【解析】
本题等价于求过BC直线的平面截长方体的面积的取值范围。【详解】长方体在平面内的射影所构成的图形面积的取值范围等价于,求过BC直线的平面截长方体的面积的取值范围。由图形知,,故选A.【点睛】将问题等价转换为可视的问题。8、B【解析】
根据向量的平行关系,得到间的等量关系,再根据“”的妙用结合基本不等式即可求解出的最小值.【详解】因为,所以,所以,又因为,取等号时即,所以.故选:B.【点睛】本题考查利用基本不等式求解最小值,难度一般.本题是基本不等式中的常见类型问题:已知,则,取等号时.9、C【解析】因为等差数列中,,所以,有,所以当时前项和取最小值.故选C.10、D【解析】
由正弦定理确定的长,再求出.【详解】,由正弦定理得:故选D【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由于角的终边上一点P落在直线上,可得,根据二倍角公式以及三角函数基本关系,可得,代入,可求得结果.【详解】因为角的终边上一点P落在直线上,所以,.故答案为:【点睛】本题考查同角三角函数的基本关系,巧用“1”是解决本题的关键.12、【解析】
设等比数列的公比为,根据题意得出或,根据无穷等比数列的和得出与所满足的关系式,由此可求出实数的取值范围.【详解】设等比数列的公比为,根据题意得出或,由于无穷等比数列的所有项的和为,则,.当时,则,此时,;当时,则,此时,.因此,首项的取值范围是.故答案为:.【点睛】本题考查利用无穷等比数列的和求首项的取值范围,解题的关键就是结合题意得出首项和公比的关系式,利用不等式的性质或函数的单调性来求解,考查分析问题和解决问题的能力,属于中等题.13、【解析】所求的等比中项为:.14、【解析】
根据反三角函数以及的取值范围,求得的值.【详解】由于,所以,所以.故答案为:【点睛】本小题主要考查已知三角函数值求角,考查反三角函数,属于基础题.15、【解析】
运用数列的递推式即可得到数列通项公式.【详解】数列的前项和,当时,得;当时,;综上可得故答案为:【点睛】本题考查数列的通项与前项和的关系,考查分类讨论思想的运用,求解时要注意把通项公式写成分段的形式.16、.【解析】
令,则原方程为,根据原方程有且仅有5个不同实数根,则有5个不同的解,结合图像特征,求出的值或范围,即为方程解的值或范围,转化为范围,即可求解.【详解】令,则原方程为,当时,,且为偶函数,做出图像,如下图所示:当时,有一个解;当或,有两个解;当时,有四个解;当或时,无解.,有且仅有5个不同实数根,关于的方程有一个解为,,另一个解为,在区间上,所以,实数的取值范围是.故答案为:.【点睛】本题考查复合方程根的个数求参数范围,考查了分段函数的应用,利用换元法结合的函数的奇偶性的对称性,利用数形结合是解题的关键,属于难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)由共线向量的坐标运算化简可得,将化切后代入即可(2)利用向量的坐标运算化简,利用正弦定理求,根据角的范围求值域即可.【详解】(1)∵,,且;∴,∴;∴;(2)∵;在中,由正弦定理得,∴,∴,或;又∵,∴,∴,∵,∴;∴,∴;即的取值范围是.【点睛】本题主要考查了向量数量积的坐标运算,三角恒等式,型函数的值域,属于中档题.18、(1)(2)【解析】
(1)由,可将,转化为,,代入原式,根据正弦定理可得,结合余弦定理,及,可得角C的大小。(2)因为,所以。所以为等腰三角形,根据面积为,可得,在,,,,结合余弦定理,即可求解。【详解】(1)由得由正弦定理,得,即所以又,则(2)因为,所以.所以为等腰三角形,且顶角.因为所以.在中,,,,所以解得.【点睛】本题考查同角三角函数的基本关系,正弦定理,余弦定理,求面积公式,综合性较强,考查学生分析推理,计算化简的能力,属基础题。19、(1)an=2n-1,【解析】
(1)利用等差数列、等比数列的通项公式即可求得;(2)由(1)知,cn=anbn2【详解】(1)设等差数列an的公差为d,等比数列bn的公比为因为a6=a4+4所以an由b3b5又显然b4必与b2同号,所以所以q2=b所以bn(2)由(1)知,cn则Tn12①-②,得1=1+1-所以Tn【点睛】用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“Sn-qSn”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.20、;;【解析】
设扇形的半径为,弧长为,利用周长关系,表示出扇形的面积,利用二次函数求出面积的最大值,以及圆心角的大小.【详解】设扇形的半径为,弧长为,则,即,扇形的面积,将上式代入得,所以当且仅当时,有最大值,此时,可得,所以当时,扇形的面积取最大值,最大值为【点睛】本题考查了扇形的弧长公式、面积公式以及二次函数的性质,需熟记扇形的弧长、面积公式,属于基础题.21、(1)证明见解析.(2)证明见解析.【解析】
(1)根据所给递推公式,将式子变形,即可由等差数列定义证明数列为等差数列.(2)根据数列为等差数列,结合等差数列通项公式求法求得通项
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度区块链技术服务与租赁合同3篇
- 2024年度保险合同标的:企业财产保险一份3篇
- 2024年度大数据产业发展融资合同2篇
- 2024年度保险经纪服务合同保险方案与服务内容3篇
- 二零二四年文化艺术品数字化展示平台建设合同3篇
- 全新农村消防水池修建及管理服务2024年度承包合同2篇
- 饭堂承包合同范本
- 二零二四年度云计算平台建设与运维合同
- 脱模剂购销合同
- 2024年度广告投放代理合同(新媒体平台)2篇
- 骨与骨连结讲义
- 血栓弹力图课件-PPT
- 劲性钢板墙施工工法
- 煤矿选煤厂各岗位风险源辨识卡
- 红旗驾驶员先进事迹
- 钢筋混凝土顶管工作井、接收井计算书
- 银行资金监管协议
- 光荣升旗手PPT课件
- 集团总裁办规章制度流程汇编
- 消防泵房及雨淋阀室建筑施工方案
- 数码相机常用英文缩写对照表
评论
0/150
提交评论