




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市交大二附中2024年中考数学适应性模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知AB是⊙O的直径,弦CD⊥AB于E,连接BC、BD、AC,下列结论中不一定正确的是()A.∠ACB=90° B.OE=BE C.BD=BC D.2.有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|b| D.b+c>03.把不等式组的解集表示在数轴上,正确的是()A. B.C. D.4.计算2a2+3a2的结果是()A.5a4 B.6a2 C.6a4 D.5a25.如图,在中,,以边的中点为圆心,作半圆与相切,点分别是边和半圆上的动点,连接,则长的最大值与最小值的和是()A. B. C. D.6.下列因式分解正确的是()A.x2+9=(x+3)2 B.a2+2a+4=(a+2)2C.a3-4a2=a2(a-4) D.1-4x2=(1+4x)(1-4x)7.如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为()A.8 B.8 C.4 D.68.数轴上有A,B,C,D四个点,其中绝对值大于2的点是()A.点A B.点B C.点C D.点D9.对于代数式ax2+bx+c(a≠0),下列说法正确的是()①如果存在两个实数p≠q,使得ap2+bp+c=aq2+bq+c,则a+bx+c=a(x-p)(x-q)②存在三个实数m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c③如果ac<0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c④如果ac>0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+cA.③ B.①③ C.②④ D.①③④10.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(-2,y1),(,y2)是抛物线上的两点,则y1<y2.其中说法正确的有()A.②③④ B.①②③ C.①④ D.①②④11.如图,点F是ABCD的边AD上的三等分点,BF交AC于点E,如果△AEF的面积为2,那么四边形CDFE的面积等于()A.18 B.22 C.24 D.4612.如图,△ABC为等腰直角三角形,∠C=90°,点P为△ABC外一点,CP=,BP=3,AP的最大值是()A.+3 B.4 C.5 D.3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在直径为10m的圆柱形油槽内装入一些油后,截面如图所示如果油面宽AB=8m,那么油的最大深度是_________.14.观察下列图形,若第1个图形中阴影部分的面积为1,第2个图形中阴影部分的面积为,第3个图形中阴影部分的面积为,第4个图形中阴影部分的面积为,…则第n个图形中阴影部分的面积为_____.(用字母n表示)15.若关于x的方程(k﹣1)x2﹣4x﹣5=0有实数根,则k的取值范围是_____.16.在直角坐标系中,坐标轴上到点P(﹣3,﹣4)的距离等于5的点的坐标是.17.如果x+y=5,那么代数式的值是______.18.若点M(1,m)和点N(4,n)在直线y=﹣x+b上,则m___n(填>、<或=)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小刚认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小刚和小亮谁说得对?请你判断并计算出正确的限制高度.(结果精确到0.1m,参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)20.(6分)已知:如图,在平行四边形中,的平分线交于点,过点作的垂线交于点,交延长线于点,连接,.求证:;若,,,求的长.21.(6分)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.求证:△ADF∽△ACG;若,求的值.22.(8分)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.23.(8分)如图,平面直角坐标系中,直线与x轴,y轴分别交于A,B两点,与反比例函数的图象交于点.求反比例函数的表达式;若点C在反比例函数的图象上,点D在x轴上,当四边形ABCD是平行四边形时,求点D的坐标.24.(10分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件元,出厂价为每件元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:.李明在开始创业的第一个月将销售单价定为元,那么政府这个月为他承担的总差价为多少元?设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?物价部门规定,这种节能灯的销售单价不得高于元.如果李明想要每月获得的利润不低于元,那么政府为他承担的总差价最少为多少元?25.(10分)如图,在每个小正方形的边长为1的网格中,点A、B、C均在格点上.(I)AC的长等于_____.(II)若AC边与网格线的交点为P,请找出两条过点P的直线来三等分△ABC的面积.请在如图所示的网格中,用无刻度的直尺,画出这两条直线,并简要说明这两条直线的位置是如何找到的_____(不要求证明).26.(12分)如图1,AB为半圆O的直径,半径的长为4cm,点C为半圆上一动点,过点C作CE⊥AB,垂足为点E,点D为弧AC的中点,连接DE,如果DE=2OE,求线段AE的长.小何根据学习函数的经验,将此问题转化为函数问题解决.小华假设AE的长度为xcm,线段DE的长度为ycm.(当点C与点A重合时,AE的长度为0cm),对函数y随自变量x的变化而变化的规律进行探究.下面是小何的探究过程,请补充完整:(说明:相关数据保留一位小数).(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm012345678y/cm01.62.53.34.04.75.85.7当x=6cm时,请你在图中帮助小何完成作图,并使用刻度尺度量此时线段DE的长度,填写在表格空白处:(2)在图2中建立平面直角坐标系,描出补全后的表中各组对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象解决问题,当DE=2OE时,AE的长度约为cm.27.(12分)如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.(1)求证:DF是BF和CF的比例中项;(2)在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】
根据垂径定理及圆周角定理进行解答即可.【详解】∵AB是⊙O的直径,∴∠ACB=90°,故A正确;∵点E不一定是OB的中点,∴OE与BE的关系不能确定,故B错误;∵AB⊥CD,AB是⊙O的直径,∴,∴BD=BC,故C正确;∴,故D正确.故选B.【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.2、C【解析】
根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案.【详解】解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.【点睛】本题考查了有理数大小的比较、有理数的运算,绝对值的性质,熟练掌握相关的知识是解题的关键3、B【解析】
首先解出各个不等式的解集,然后求出这些解集的公共部分即可.【详解】解:由x﹣2≥0,得x≥2,由x+1<0,得x<﹣1,所以不等式组无解,故选B.【点睛】解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.4、D【解析】
直接合并同类项,合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.【详解】2a2+3a2=5a2.故选D.【点睛】本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.5、C【解析】
如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.【详解】解:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,\∴P1C=P1B,∴OP1=AC=4,∴P1Q1最小值为OP1-OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是1.故选:C.【点睛】本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.6、C【解析】
试题分析:A、B无法进行因式分解;C正确;D、原式=(1+2x)(1-2x)故选C,考点:因式分解【详解】请在此输入详解!7、D【解析】分析:连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.详解:如图,连接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴BC=2,∴AC=2BC=4,∴AB===6,故选D.点睛:本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.8、A【解析】
根据绝对值的含义和求法,判断出绝对值等于2的数是﹣2和2,据此判断出绝对值等于2的点是哪个点即可.【详解】解:∵绝对值等于2的数是﹣2和2,∴绝对值等于2的点是点A.故选A.【点睛】此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.9、A【解析】设(1)如果存在两个实数p≠q,使得ap2+bp+c=aq2+bq+c,则说明在中,当x=p和x=q时的y值相等,但并不能说明此时p、q是与x轴交点的横坐标,故①中结论不一定成立;(2)若am2+bm+c=an2+bn+c=as2+bs+c,则说明在中当x=m、n、s时,对应的y值相等,因此m、n、s中至少有两个数是相等的,故②错误;(3)如果ac<0,则b2-4ac>0,则的图象和x轴必有两个不同的交点,所以此时一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c,故③在结论正确;(4)如果ac>0,则b2-4ac的值的正负无法确定,此时的图象与x轴的交点情况无法确定,所以④中结论不一定成立.综上所述,四种说法中正确的是③.故选A.10、D【解析】
根据图象得出a<0,a+b=0,c>0,即可判断①②;把x=2代入抛物线的解析式即可判断③,根据(-2,y1),(,y2)到对称轴的距离即可判断④.【详解】∵二次函数的图象的开口向下,∴a<0,∵二次函数的图象y轴的交点在y轴的正半轴上,∴c>0,∵二次函数图象的对称轴是直线x=,∴a=-b,∴b>0,∴abc<0,故①正确;∵a=-b,∴a+b=0,故②正确;把x=2代入抛物线的解析式得,4a+2b+c=0,故③错误;∵,故④正确;故选D..【点睛】本题考查了二次函数的图象与系数的关系的应用,题目比较典型,主要考查学生的理解能力和辨析能力.11、B【解析】
连接FC,先证明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根据点F是□ABCD的边AD上的三等分点得出S△FCD=2S△AFC,四边形CDFE的面积=S△FCD+S△EFC,再代入△AEF的面积为2即可求出四边形CDFE的面积.【详解】解:∵AD∥BC,∴∠EAF=∠ACB,∠AFE=∠FBC;∵∠AEF=∠BEC,∴△AEF∽△BEC,∴==,∵△AEF与△EFC高相等,∴S△EFC=3S△AEF,∵点F是□ABCD的边AD上的三等分点,∴S△FCD=2S△AFC,∵△AEF的面积为2,∴四边形CDFE的面积=S△FCD+S△EFC=16+6=22.故选B.【点睛】本题考查了相似三角形的应用与三角形的面积,解题的关键是熟练的掌握相似三角形的应用与三角形的面积的相关知识点.12、C【解析】
过点C作,且CQ=CP,连接AQ,PQ,证明≌根据全等三角形的性质,得到根据等腰直角三角形的性质求出PQ的长度,进而根据,即可解决问题.【详解】过点C作,且CQ=CP,连接AQ,PQ,在和中≌AP的最大值是5.故选:C.【点睛】考查全等三角形的判定与性质,三角形的三边关系,作出辅助线是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2m【解析】
本题是已知圆的直径,弦长求油的最大深度其实就是弧AB的中点到弦AB的距离,可以转化为求弦心距的问题,利用垂径定理来解决.【详解】解:过点O作OM⊥AB交AB与M,交弧AB于点E.连接OA.在Rt△OAM中:OA=5m,AM=12根据勾股定理可得OM=3m,则油的最大深度ME为5-3=2m.【点睛】圆中的有关半径,弦长,弦心距之间的计算一般是通过垂径定理转化为解直角三角形的问题.14、n﹣1(n为整数)【解析】试题分析:观察图形可得,第1个图形中阴影部分的面积=()0=1;第2个图形中阴影部分的面积=()1=;第3个图形中阴影部分的面积=()2=;第4个图形中阴影部分的面积=()3=;…根据此规律可得第n个图形中阴影部分的面积=()n-1(n为整数)•考点:图形规律探究题.15、【解析】当k−1=0,即k=1时,原方程为−4x−5=0,解得:x=−,∴k=1符合题意;当k−1≠0,即k≠1时,有,解得:k⩾且k≠1.综上可得:k的取值范围为k⩾.故答案为k⩾.16、(0,0)或(0,﹣8)或(﹣6,0)【解析】
由P(﹣3,﹣4)可知,P到原点距离为5,而以P点为圆心,5为半径画圆,圆经过原点分别与x轴、y轴交于另外一点,共有三个.【详解】解:∵P(﹣3,﹣4)到原点距离为5,而以P点为圆心,5为半径画圆,圆经过原点且分别交x轴、y轴于另外两点(如图所示),∴故坐标轴上到P点距离等于5的点有三个:(0,0)或(0,﹣8)或(﹣6,0).故答案是:(0,0)或(0,﹣8)或(﹣6,0).17、1【解析】
先将分式化简,然后将x+y=1代入即可求出答案【详解】当x+y=1时,原式=x+y=1,故答案为:1.【点睛】本题考查分式的化简求值,解题的关键是利用运用分式的运算法则求解代数式.18、>【解析】
根据一次函数的性质,k<0时,y随x的增大而减小.【详解】因为k=﹣<0,所以函数值y随x的增大而减小,因为1<4,所以,m>n.故答案为:>【点睛】本题考核知识点:一次函数.解题关键点:熟记一次函数的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、小亮说的对,CE为2.6m.【解析】
先根据CE⊥AE,判断出CE为高,再根据解直角三角形的知识解答.【详解】解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,∵tan∠BAD=BDBA∴BD=10×tan18°,∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),在△ABD中,∠CDE=90°﹣∠BAD=72°,∵CE⊥ED,∴sin∠CDE=CECD∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m),∵2.6m<2.7m,且CE⊥AE,∴小亮说的对.答:小亮说的对,CE为2.6m.【点睛】本题主要考查了解直角三角形的应用,主要是正弦、正切概念及运算,解决本题的关键把实际问题转化为数学问题.20、(1)详见解析;(2)【解析】
(1)根据题意平分可得,从而证明即可解答(2)由(1)可知,再根据四边形是平行四边形可得,过点作延长线于点,再根据勾股定理即可解答【详解】(1)证明:平分又又(2)四边形是平行四边形,为等边三角形过点作延长线于点.在中,【点睛】此题考查三角形全等的判定与性质,勾股定理,平行四边形的性质,解题关键在于作好辅助线21、(1)证明见解析;(2)1.【解析】(1)欲证明△ADF∽△ACG,由可知,只要证明∠ADF=∠C即可.(2)利用相似三角形的性质得到,由此即可证明.【解答】(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴,又∵,∴,∴1.22、(1)作图见解析(2)∠BDC=72°【解析】解:(1)作图如下:(2)∵在△ABC中,AB=AC,∠ABC=72°,∴∠A=180°﹣2∠ABC=180°﹣144°=36°.∵AD是∠ABC的平分线,∴∠ABD=∠ABC=×72°=36°.∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=36°+36°=72°.(1)根据角平分线的作法利用直尺和圆规作出∠ABC的平分线:①以点B为圆心,任意长为半径画弧,分别交AB、BC于点E、F;②分别以点E、F为圆心,大于EF为半径画圆,两圆相较于点G,连接BG交AC于点D.(2)先根据等腰三角形的性质及三角形内角和定理求出∠A的度数,再由角平分线的性质得出∠ABD的度数,再根据三角形外角的性质得出∠BDC的度数即可.23、(1)y=(1)(1,0)【解析】
(1)将点M的坐标代入一次函数解析式求得a的值;然后将点M的坐标代入反比例函数解析式,求得k的值即可;(1)根据平行四边形的性质得到BC∥AD且BD=AD,结合图形与坐标的性质求得点D的坐标.【详解】解:(1)∵点M(a,4)在直线y=1x+1上,∴4=1a+1,解得a=1,∴M(1,4),将其代入y=得到:k=xy=1×4=4,∴反比例函数y=(x>0)的表达式为y=;(1)∵平面直角坐标系中,直线y=1x+1与x轴,y轴分别交于A,B两点,∴当x=0时,y=1.当y=0时,x=﹣1,∴B(0,1),A(﹣1,0).∵BC∥AD,∴点C的纵坐标也等于1,且点C在反比例函数图象上,将y=1代入y=,得1=,解得x=1,∴C(1,1).∵四边形ABCD是平行四边形,∴BC∥AD且BD=AD,由B(0,1),C(1,1)两点的坐标知,BC∥AD.又BC=1,∴AD=1,∵A(﹣1,0),点D在点A的右侧,∴点D的坐标是(1,0).【点睛】考查了反比例函数与一次函数交点问题.熟练掌握平行四边形的性质和函数图象上点的坐标特征是解决问题的关键,难度适中.24、(1)政府这个月为他承担的总差价为644元;(2)当销售单价定为34元时,每月可获得最大利润144元;(3)销售单价定为25元时,政府每个月为他承担的总差价最少为544元.【解析】试题分析:(1)把x=24代入y=﹣14x+544求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;(2)由利润=销售价﹣成本价,得w=(x﹣14)(﹣14x+544),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令﹣14x2+644x﹣5444=2,求出x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.试题解析:(1)当x=24时,y=﹣14x+544=﹣14×24+544=344,344×(12﹣14)=344×2=644元,即政府这个月为他承担的总差价为644元;(2)依题意得,w=(x﹣14)(﹣14x+544)=﹣14x2+644x﹣5444=﹣14(x﹣34)2+144∵a=﹣14<4,∴当x=34时,w有最大值144元.即当销售单价定为34元时,每月可获得最大利润144元;(3)由题意得:﹣14x2+644x﹣5444=2,解得:x1=24,x2=1.∵a=﹣14<4,抛物线开口向下,∴结合图象可知:当24≤x≤1时,w≥2.又∵x≤25,∴当24≤x≤25时,w≥2.设政府每个月为他承担的总差价为p元,∴p=(12﹣14)×(﹣14x+544)=﹣24x+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- YY/T 1860.1-2024无源外科植入物植入物涂层第1部分:通用要求
- 购房补充合同范本
- 城市垃圾处理站承包合同协议书
- 股权合伙合同协议
- 单位实习生劳动合同范本
- 简易短期借款合同文本
- 度工业用地使用权转让合同书
- 农业技术合作协议合同范本
- 软件租赁与服务合同
- 校园欺凌心理安全课件
- 《小儿过敏性紫癜》课件
- 医疗器械生产中的人工智能应用技巧
- 回奶介绍演示培训课件
- 2024年福建福州地铁集团招聘笔试参考题库含答案解析
- 绿色施工环境保护应急预案
- 2023静脉治疗护理技术操作标准解读
- 基础日语1学习通超星课后章节答案期末考试题库2023年
- 客源国概况-韩国课件
- 保密风险评估报告
- 道路建筑材料电子教案(全)
- 《尹定邦设计学概论》试题及答案
评论
0/150
提交评论