山西省大同市灵丘县2024年中考数学押题试卷含解析_第1页
山西省大同市灵丘县2024年中考数学押题试卷含解析_第2页
山西省大同市灵丘县2024年中考数学押题试卷含解析_第3页
山西省大同市灵丘县2024年中考数学押题试卷含解析_第4页
山西省大同市灵丘县2024年中考数学押题试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省大同市灵丘县2024年中考数学押题试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.的值是A. B. C. D.2.如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=()A.23° B.46° C.67° D.78°3.已知点A(1﹣2x,x﹣1)在第二象限,则x的取值范围在数轴上表示正确的是()A. B.C. D.4.等腰三角形一边长等于5,一边长等于10,它的周长是()A.20 B.25 C.20或25 D.155.如图,在平面直角坐标系xOy中,A(2,0),B(0,2),⊙C的圆心为点C(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于E点,则△ABE面积的最小值是()A.2B.83C.2+26.如图,正方形ABCD的顶点C在正方形AEFG的边AE上,AB=2,AE=,则点G到BE的距离是()A. B. C. D.7.在平面直角坐标系中,将点P(﹣4,2)绕原点O顺时针旋转90°,则其对应点Q的坐标为()A.(2,4) B.(2,﹣4) C.(﹣2,4) D.(﹣2,﹣4)8.如图,点A、B、C在⊙O上,∠OAB=25°,则∠ACB的度数是()A.135° B.115° C.65° D.50°9.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=32其中正确的结论个数为()A.4 B.3 C.2 D.110.一元二次方程(x+3)(x-7)=0的两个根是A.x1=3,x2=-7B.x1=3,x2=7C.x1=-3,x2=7D.x1=-3,x2=-7二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB=__________°.12.若关于的一元二次方程(m-1)x2-4x+1=0有两个不相等的实数根,则m的取值范围为_____________.13.为了求1+2+22+23+…+22016+22017的值,可令S=1+2+22+23+…+22016+22017,则2S=2+22+23+24+…+22017+22018,因此2S﹣S=22018﹣1,所以1+22+23+…+22017=22018﹣1.请你仿照以上方法计算1+5+52+53+…+52017的值是_____.14.已知一个多边形的每一个外角都等于,则这个多边形的边数是.15.据统计,今年无锡鼋头渚“樱花节”活动期间入园赏樱人数约803万人次,用科学记数法可表示为_____人次.16.已知线段a=4,b=1,如果线段c是线段a、b的比例中项,那么c=_____.三、解答题(共8题,共72分)17.(8分)九年级学生到距离学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设(分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为千米,骑自行车学生骑行的路程为千米,关于的函数图象如图所示.(1)求关于的函数解析式;(2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?18.(8分)化简求值:,其中.19.(8分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)20.(8分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共件,其中b班征集到作品件,请把图2补充完整;王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.21.(8分)观察下列多面体,并把下表补充完整.名称三棱柱四棱柱五棱柱六棱柱图形顶点数61012棱数912面数58观察上表中的结果,你能发现、、之间有什么关系吗?请写出关系式.22.(10分)(1)如图1,在矩形ABCD中,AB=2,BC=5,∠MPN=90°,且∠MPN的直角顶点在BC边上,BP=1.①特殊情形:若MP过点A,NP过点D,则=.②类比探究:如图2,将∠MPN绕点P按逆时针方向旋转,使PM交AB边于点E,PN交AD边于点F,当点E与点B重合时,停止旋转.在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由.(2)拓展探究:在Rt△ABC中,∠ABC=90°,AB=BC=2,AD⊥AB,⊙A的半径为1,点E是⊙A上一动点,CF⊥CE交AD于点F.请直接写出当△AEB为直角三角形时的值.23.(12分)某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路.甲勘测员在A处测得点O位于北偏东45°,乙勘测员在B处测得点O位于南偏西73.7°,测得AC=840m,BC=500m.请求出点O到BC的距离.参考数据:sin73.7°≈,cos73.7°≈,tan73.7°≈24.甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2)求乙组加工零件总量a的值.

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】

根据特殊角三角函数值,可得答案.【详解】解:,故选:D.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.2、B【解析】

根据圆的半径相等可知AB=AC,由等边对等角求出∠ACB,再由平行得内错角相等,最后由平角180°可求出∠1.【详解】根据题意得:AB=AC,∴∠ACB=∠ABC=67°,∵直线l1∥l2,∴∠2=∠ABC=67°,∵∠1+∠ACB+∠2=180°,∴∠ACB=180°-∠1-∠ACB=180°-67°-67°=46º.故选B.【点睛】本题考查等腰三角形的性质,平行线的性质,熟练根据这些性质得到角之间的关系是关键.3、B【解析】

先分别求出每一个不等式的解集,再根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:根据题意,得:,解不等式①,得:x>,解不等式②,得:x>1,∴不等式组的解集为x>1,故选:B.【点睛】本题主要考查解一元一次不等式组,关键要掌握解一元一次不等式的方法,牢记确定不等式组解集方法.4、B【解析】

题目中没有明确腰和底,故要分情况讨论,再结合三角形的三边关系分析即可.【详解】当5为腰时,三边长为5、5、10,而,此时无法构成三角形;当5为底时,三边长为5、10、10,此时可以构成三角形,它的周长故选B.5、C【解析】当⊙C与AD相切时,△ABE面积最大,连接CD,则∠CDA=90°,∵A(2,0),B(0,2),⊙C的圆心为点C(-1,0),半径为1,∴CD=1,AC=2+1=3,∴AD=AC2-CD∵∠AOE=∠ADC=90°,∠EAO=∠CAD,∴△AOE∽△ADC,∴OA即222=∴BE=OB+OE=2+2∴S△ABE=1BE?OA=12×(2+22故答案为C.6、A【解析】

根据平行线的判定,可得AB与GE的关系,根据平行线间的距离相等,可得△BEG与△AEG的关系,根据根据勾股定理,可得AH与BE的关系,再根据勾股定理,可得BE的长,根据三角形的面积公式,可得G到BE的距离.【详解】连接GB、GE,由已知可知∠BAE=45°.又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.∵AE=4,AB与GE间的距离相等,∴GE=8,S△BEG=S△AEG=SAEFG=1.过点B作BH⊥AE于点H,∵AB=2,∴BH=AH=.∴HE=3.∴BE=2.设点G到BE的距离为h.∴S△BEG=•BE•h=×2×h=1.∴h=.即点G到BE的距离为.故选A.【点睛】本题主要考查了几何变换综合题.涉及正方形的性质,全等三角形的判定及性质,等积式及四点共圆周的知识,综合性强.解题的关键是运用等积式及四点共圆的判定及性质求解.7、A【解析】

首先求出∠MPO=∠QON,利用AAS证明△PMO≌△ONQ,即可得到PM=ON,OM=QN,进而求出Q点坐标.【详解】作图如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,∵,∴△PMO≌△ONQ,∴PM=ON,OM=QN,∵P点坐标为(﹣4,2),∴Q点坐标为(2,4),故选A.【点睛】此题主要考查了旋转的性质,以及全等三角形的判定和性质,关键是掌握旋转后对应线段相等.8、B【解析】

由OA=OB得∠OAB=∠OBA=25°,根据三角形内角和定理计算出∠AOB=130°,则根据圆周角定理得∠P=

∠AOB,然后根据圆内接四边形的性质求解.【详解】解:在圆上取点

P

,连接

PA

PB.∵OA=OB

,∴∠OAB=∠OBA=25°

,∴∠AOB=180°−2×25°=130°

,∴∠P=∠AOB=65°,∴∠ACB=180°−∠P=115°.故选B.【点睛】本题考查的是圆,熟练掌握圆周角定理是解题的关键.9、B【解析】试题分析:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本选项正确;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N(如图1),则△CBM≌△CDN(AAS),∴S四边形BCDG=S四边形CMGN,S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=12CG,CM=32CG,∴S四边形CMGN=2S△CMG=2×12×12CG×③过点F作FP∥AE于P点(如图2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:12④当点E,F分别是AB,AD中点时(如图3),由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;综上所述,正确的结论有①③⑤,共3个,故选B.考点:四边形综合题.10、C【解析】

根据因式分解法直接求解即可得.【详解】∵(x+3)(x﹣7)=0,∴x+3=0或x﹣7=0,∴x1=﹣3,x2=7,故选C.【点睛】本题考查了解一元二次方程——因式分解法,根据方程的特点选择恰当的方法进行求解是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、1.【解析】

连接BD,如图,根据圆周角定理得到∠ABD=90°,则利用互余计算出∠D=1°,然后再利用圆周角定理得到∠ACB的度数.【详解】连接BD,如图,∵AD为△ABC的外接圆⊙O的直径,∴∠ABD=90°,∴∠D=90°﹣∠BAD=90°﹣50°=1°,∴∠ACB=∠D=1°.故答案为1.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.12、且【解析】试题解析:∵一元二次方程有两个不相等的实数根,∴m−1≠0且△=16−4(m−1)>0,解得m<5且m≠1,∴m的取值范围为m<5且m≠1.故答案为:m<5且m≠1.点睛:一元二次方程方程有两个不相等的实数根时:13、【解析】

根据上面的方法,可以令S=1+5+52+53+…+52017,则5S=5+52+53+…+52012+52018,再相减算出S的值即可.【详解】解:令S=1+5+52+53+…+52017,则5S=5+52+53+…+52012+52018,5S﹣S=﹣1+52018,4S=52018﹣1,则S=,故答案为:.【点睛】此题参照例子,采用类比的方法就可以解决,注意这里由于都是5的次方,所以要用5S来达到抵消的目的.14、5【解析】

∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.15、8.03×106【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.803万=.16、1【解析】

根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.【详解】根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.则c1=4×1,c=±1,(线段是正数,负值舍去),故c=1.故答案为1.【点睛】本题考查了比例线段;理解比例中项的概念,这里注意线段不能是负数.三、解答题(共8题,共72分)17、;(2)骑自行车的学生先到达百花公园,先到了10分钟.【解析】

(1)根据函数图象中的数据可以求得关于的函数解析式;(2)根据函数图象中的数据和题意可以分别求得步行学生和骑自行车学生到达百花公园的时间,从而可以解答本题.【详解】解:(1)设关于的函数解析式是,,得,即关于的函数解析式是;(2)由图象可知,步行的学生的速度为:千米/分钟,步行同学到达百花公园的时间为:(分钟),当时,,得,,答:骑自行车的学生先到达百花公园,先到了10分钟.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.18、【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.详解:原式当时,点睛:考查分式的混合运算,掌握运算顺序是解题的关键.19、(70﹣10)m.【解析】

过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解得到DF的长度;通过解得到CE的长度,则【详解】如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在中,∵AF=80m−10m=70m,∴DF=AF=70m.在中,∵DE=10m,∴∴答:障碍物B,C两点间的距离为20、(1)抽样调查;12;3;(2)60;(3).【解析】试题分析:(1)根据只抽取了4个班可知是抽样调查,根据C在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数;(2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;(3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.试题解析:(1)抽样调查,所调查的4个班征集到作品数为:5÷=12件,B作品的件数为:12﹣2﹣5﹣2=3件,故答案为抽样调查;12;3;把图2补充完整如下:(2)王老师所调查的四个班平均每个班征集作品=12÷4=3(件),所以,估计全年级征集到参展作品:3×14=42(件);(3)画树状图如下:列表如下:共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女)==,即恰好抽中一男一女的概率是.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法;5.图表型.21、8,15,18,6,7;【解析】分析:结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与n棱柱的关系,可知n棱柱一定有(n+1)个面,1n个顶点和3n条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系.详解:填表如下:名称三棱柱四棱柱五棱柱六棱柱图形顶点数a681011棱数b9111518面数c5678根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有n+1个面,共有1n个顶点,共有3n条棱;故a,b,c之间的关系:a+c-b=1.点睛:此题通过研究几个棱柱中顶点数、棱数、面数的关系探索出n棱柱中顶点数、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论