版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省日照市实验二中学2024届中考二模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,有一些点组成形如四边形的图案,每条“边”(包括顶点)有n(n>1)个点.当n=2018时,这个图形总的点数S为()A.8064 B.8067 C.8068 D.80722.如图,△ABC的面积为12,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C处,P为直线AD上的一点,则线段BP的长可能是()A.3 B.5 C.6 D.103.下列计算正确的是()A.a2+a2=a4 B.a5•a2=a7 C.(a2)3=a5 D.2a2﹣a2=24.根据《天津市北大港湿地自然保护总体规划(2017﹣2025)》,2018年将建立养殖业退出补偿机制,生态补水78000000m1.将78000000用科学记数法表示应为()A.780×105B.78×106C.7.8×107D.0.78×1085.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B. C. D.6.许昌市2017年国内生产总值完成1915.5亿元,同比增长9.3%,增速居全省第一位,用科学记数法表示1915.5亿应为()A.1915.15×108 B.19.155×1010C.1.9155×1011 D.1.9155×10127.的绝对值是()A.﹣4 B. C.4 D.0.48.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为()米A. B. C.+1 D.39.某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件个,依题意列方程为()A. B.C. D.10.下列运算正确的是()A. B.C. D.二、填空题(共7小题,每小题3分,满分21分)11.如图,路灯距离地面6,身高1.5的小明站在距离灯的底部(点)15的处,则小明的影子的长为________.12.如图,四边形ABCD中,∠D=∠B=90°,AB=BC,CD=4,AC=8,设Q、R分别是AB、AD上的动点,则△CQR的周长的最小值为_________.13.某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位,设某个学生原来的座位为(m,n),如果调整后的座位为(i,j),则称该生作了平移[a,b]=[m-i,n-j],并称a+b为该生的位置数.若某生的位置数为10,则当m+n取最小值时,m•n的最大值为_____________.14.计算:的结果为_____.15.出售某种手工艺品,若每个获利x元,一天可售出个,则当x=_________元,一天出售该种手工艺品的总利润y最大.16.计算:+=______.17.分解因式:mx2﹣4m=_____.三、解答题(共7小题,满分69分)18.(10分)已知顶点为A的抛物线y=a(x-)2-2经过点B(-,2),点C(,2).(1)求抛物线的表达式;(2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN′,若点N′落在x轴上,请直接写出Q点的坐标.19.(5分)计算下列各题:(1)tan45°−sin60°•cos30°;(2)sin230°+sin45°•tan30°.20.(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线交AB,BC分别于点M,N,反比例函数的图象经过点M,N.求反比例函数的解析式;若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.21.(10分)列方程或方程组解应用题:为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.小张用骑公共自行车方式上班平均每小时行驶多少千米?22.(10分)如图,AB是圆O的直径,AC是圆O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=2.(1)求∠A的度数.(2)求图中阴影部分的面积.23.(12分)如图山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC为米,斜坡BC的坡度i=1:.小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从E处测得旗杆顶部A的仰角为45°,旗杆底部B的仰角为20°.(1)求坡角∠BCD;(2)求旗杆AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24.(14分)如图,AB是⊙O的直径,点C是弧AB的中点,点D是⊙O外一点,AD=AB,AD交⊙O于F,BD交⊙O于E,连接CE交AB于G.(1)证明:∠C=∠D;(2)若∠BEF=140°,求∠C的度数;(3)若EF=2,tanB=3,求CE•CG的值.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】分析:本题重点注意各个顶点同时在两条边上,计算点的个数时,不要把顶点重复计算了.详解:此题中要计算点的个数,可以类似周长的计算方法进行,但应注意各个顶点重复了一次.如当n=2时,共有S2=4×2﹣4=4;当n=3时,共有S3=4×3﹣4,…,依此类推,即Sn=4n﹣4,当n=2018时,S2018=4×2018﹣4=1.故选C.点睛:本题考查了图形的变化类问题,关键是通过归纳与总结,得到其中的规律.2、D【解析】
过B作BN⊥AC于N,BM⊥AD于M,根据折叠得出∠C′AB=∠CAB,根据角平分线性质得出BN=BM,根据三角形的面积求出BN,即可得出点B到AD的最短距离是8,得出选项即可.【详解】解:如图:
过B作BN⊥AC于N,BM⊥AD于M,
∵将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,
∴∠C′AB=∠CAB,
∴BN=BM,
∵△ABC的面积等于12,边AC=3,
∴×AC×BN=12,
∴BN=8,
∴BM=8,
即点B到AD的最短距离是8,
∴BP的长不小于8,
即只有选项D符合,
故选D.【点睛】本题考查的知识点是折叠的性质,三角形的面积,角平分线性质的应用,解题关键是求出B到AD的最短距离,注意:角平分线上的点到角的两边的距离相等.3、B【解析】
根据整式的加减乘除乘方运算法则逐一运算即可。【详解】A.,故A选项错误。B.,故B选项正确。C.,故C选项错误。D.,故D选项错误。故答案选B.【点睛】本题考查整式加减乘除运算法则,只需熟记法则与公式即可。4、C【解析】
科学记数法记数时,主要是准确把握标准形式a×10n即可.【详解】解:78000000=7.8×107.故选C.【点睛】科学记数法的形式是a×10n,其中1≤|a|<10,n是整数,若这个数是大于10的数,则n比这个数的整数位数少1.5、B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.6、C【解析】
科学记数法的表示形式为的形式,其中为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.【详解】用科学记数法表示1915.5亿应为1.9155×1011,故选C.【点睛】考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.7、B【解析】分析:根据绝对值的性质,一个负数的绝对值等于其相反数,可有相反数的意义求解.详解:因为-的相反数为所以-的绝对值为.故选:B点睛:此题主要考查了求一个数的绝对值,关键是明确绝对值的性质,一个正数的绝对值等于本身,0的绝对值是0,一个负数的绝对值为其相反数.8、C【解析】由题意可知,AC=1,AB=2,∠CAB=90°据勾股定理则BC=m;∴AC+BC=(1+)m.答:树高为(1+)米.故选C.9、A【解析】
设原计划每天生产零件x个,则实际每天生产零件为1.5x个,根据提前5天完成任务,列方程即可.【详解】设原计划每天生产零件x个,则实际每天生产零件为1.5x个,由题意得,故选:A.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可.10、D【解析】
由去括号法则:如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反;完全平方公式:(a±b)2=a2±2ab+b2;单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式进行计算即可.【详解】解:A、a-(b+c)=a-b-c≠a-b+c,故原题计算错误;
B、(x+1)2=x2+2x+1≠x²+1,故原题计算错误;
C、(-a)3=≠,故原题计算错误;
D、2a2•3a3=6a5,故原题计算正确;
故选:D.【点睛】本题考查了整式的乘法,解题的关键是掌握有关计算法则.二、填空题(共7小题,每小题3分,满分21分)11、1.【解析】
易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长.【详解】解:根据题意,易得△MBA∽△MCO,
根据相似三角形的性质可知,即,
解得AM=1m.则小明的影长为1米.
故答案是:1.【点睛】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比可得出小明的影长.12、【解析】
作C关于AB的对称点G,关于AD的对称点F,可得三角形CQR的周长=CQ+QR+CR=GQ+QR+RF≥GF.根据圆周角定理可得∠CDB=∠CAB=45°,∠CBD=∠CAD=30°,由于GF=2BD,在三角形CBD中,作CH⊥BD于H,可求BD的长,从而求出△CQR的周长的最小值.【详解】解:作C关于AB的对称点G,关于AD的对称点F,则三角形CQR的周长=CQ+QR+CR=GQ+QR+RF=GF,在Rt△ADC中,∵sin∠DAC=,∴∠DAC=30°,∵BA=BC,∠ABC=90°,∴∠BAC=∠BCA=45°,∵∠ADC=∠ABC=90°,∴A,B,C,D四点共圆,∴∠CDB=∠CAB=45°,∠CBD=∠CAD=30°在三角形CBD中,作CH⊥BD于H,BD=DH+BH=4×cos45°+×cos30°=,∵CD=DF,CB=BG,∴GF=2BD=,△CQR的周长的最小值为.【点睛】本题考查了轴对称问题,关键是根据轴对称的性质和两点之间线段最短解答.13、36【解析】
10=a+b=(m-i)+(n-j)=(m+n)-(i+j)所以:m+n=10+i+j当(m+n)取最小值时,(i+j)也必须最小,所以i和j都是2,这样才能(i+j)才能最小,因此:m+n=10+2=12也就是:当m+n=12时,m·n最大是多少?这就容易了:m·n<=36所以m·n的最大值就是3614、【解析】分析:根据二次根式的性质先化简,再合并同类二次根式即可.详解:原式=3-5=﹣2.点睛:此题主要考查了二次根式的加减,灵活利用二次根式的化简是解题关键,比较简单.15、1【解析】先根据题意得出总利润y与x的函数关系式,再根据二次函数的最值问题进行解答.解:∵出售某种手工艺品,若每个获利x元,一天可售出(8-x)个,
∴y=(8-x)x,即y=-x2+8x,
∴当x=-=1时,y取得最大值.
故答案为:1.16、1.【解析】
利用同分母分式加法法则进行计算,分母不变,分子相加.【详解】解:原式=.【点睛】本题考查同分母分式的加法,掌握法则正确计算是本题的解题关键.17、m(x+2)(x﹣2)【解析】
提取公因式法和公式法相结合因式分解即可.【详解】原式故答案为【点睛】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.三、解答题(共7小题,满分69分)18、(1)y=(x-)2-2;(2)△POE的面积为或;(3)点Q的坐标为(-,)或(-,2)或(,2).【解析】
(1)将点B坐标代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得===,即OP=FA,设点P(t,-2t-1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.【详解】解:(1)把点B(-,2)代入y=a(x-)2-2,解得a=1,∴抛物线的表达式为y=(x-)2-2,(2)由y=(x-)2-2知A(,-2),设直线AB表达式为y=kx+b,代入点A,B的坐标得,解得,∴直线AB的表达式为y=-2x-1,易求E(0,-1),F(0,-),M(-,0),若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴,∴OP=FA=,设点P(t,-2t-1),则,解得t1=-,t2=-,由对称性知,当t1=-时,也满足∠OPM=∠MAF,∴t1=-,t2=-都满足条件,∵△POE的面积=OE·|t|,∴△POE的面积为或;(3)如图,若点Q在AB上运动,过N′作直线RS∥y轴,交QR于点R,交NE的延长线于点S,设Q(a,-2a-1),则NE=-a,QN=-2a.由翻折知QN′=QN=-2a,N′E=NE=-a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴==,即===2,∴QR=2,ES=,由NE+ES=NS=QR可得-a+=2,解得a=-,∴Q(-,),如图,若点Q在BC上运动,且Q在y轴左侧,过N′作直线RS∥y轴,交BC于点R,交NE的延长线于点S.设NE=a,则N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR=,SE=-a.在Rt△SEN′中,(-a)2+12=a2,解得a=,∴Q(-,2),如图,若点Q在BC上运动,且点Q在y轴右侧,过N′作直线RS∥y轴,交BC于点R,交NE的延长线于点S.设NE=a,则N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR=,SE=-a.在Rt△SEN′中,(-a)2+12=a2,解得a=,∴Q(,2).综上,点Q的坐标为(-,)或(-,2)或(,2).【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.19、(1);(2).【解析】
(1)原式=1﹣×=1﹣=;(2)原式=×+×=.【点睛】本题考查特殊角的三角函数值,熟练掌握每个特殊角的三角函数值是解此题的关键.20、(1);(2)点P的坐标是(0,4)或(0,-4).【解析】
(1)求出OA=BC=2,将y=2代入求出x=2,得出M的坐标,把M的坐标代入反比例函数的解析式即可求出答案.(2)求出四边形BMON的面积,求出OP的值,即可求出P的坐标.【详解】(1)∵B(4,2),四边形OABC是矩形,∴OA=BC=2.将y=2代入3得:x=2,∴M(2,2).把M的坐标代入得:k=4,∴反比例函数的解析式是;(2).∵△OPM的面积与四边形BMON的面积相等,∴.∵AM=2,∴OP=4.∴点P的坐标是(0,4)或(0,-4).21、15千米.【解析】
首先设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意可得等量关系:骑公共自行车方式所用的时间=自驾车方式所用的时间×4,根据等量关系,列出方程,再解即可.【详解】:解:设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意列方程得:=4×解得:x=15,经检验x=15是原方程的解且符合实际意义.答:小张用骑公共自行车方式上班平均每小时行驶15千米.22、(1)∠A=30°;(2)【解析】
(1)连接OC,由过点C的切线交AB的延长线于点D,推出OC⊥CD,推出∠OCD=90°,即∠D+∠COD=90°,由OA=OC,推出∠A=∠ACO,由∠A=∠D,推出∠A=∠ACO=∠D再由∠A+∠ACD+∠D=180°﹣90°=90°即可得出.(2)先求∠COD度数及OC长度,即可求出图中阴影部分的面积.【详解】解:(1)连结OC∵CD为⊙O的切线∴OC⊥CD∴∠OCD=90°又∵OA=OC∴∠A=∠ACO又∵∠A=∠D∴∠A=∠ACO=∠D而∠A+∠ACD+∠D=180°﹣90°=90°∴∠A=30°(2)由(1)知:∠D=∠A=30°∴∠COD=60°又∵CD=2∴OC=2∴S阴影=.【点睛】本题考查的知识点是扇形面积的计算及切线的性质,解题的关键是熟练的掌握扇形面积的计算及切线的性质.23、旗杆AB的高度为6.4米.【解析】分析:(1)根据坡度i与坡角α之间的关系为:i=tanα进行计算;(2)根据余弦的概念求出CD,根据正切的概念求出A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024高考地理一轮复习第三部分区域可持续发展-重在综合第五章区际联系与区域协调发展第35讲产业转移课时作业含解析新人教版
- 小学一年级英语教学计划
- 2024年湖北三峡职业技术学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 八年级道德与法治上册第一次月考测试卷作业课件新人教版
- 2024年淄博师范高等专科学校高职单招语文历年参考题库含答案解析
- 2024年浙江经济职业技术学院高职单招语文历年参考题库含答案解析
- 高考生物一轮复习课时作业二十五通过激素的调节及神经调节与体液调节的关系课件
- 多电子原子课件-完整版
- gh-bladed计算载荷步骤
- 二零二五年生态湿地除草与水质净化合同3篇
- 雨季专项施工方案 雨季专项施工方案 雨季专项施工方案
- 17.5-博物馆管理法律制度(政策与法律法规-第7版)
- 卫健系统深入开展矛盾纠纷“大走访、大排查、大化解”专项行动工作方案
- 颠茄流浸膏实验方案及总结
- 投标人情况表
- GB/T 34241-2017卷式聚酰胺复合反渗透膜元件
- GB/T 12494-1990食品机械专用白油
- 运输供应商年度评价表
- 北京语言大学保卫处管理岗位工作人员招考聘用【共500题附答案解析】模拟试卷
- 肺癌的诊治指南课件
- 人教版七年级下册数学全册完整版课件
评论
0/150
提交评论