江苏省扬州市翠岗2024年中考二模数学试题含解析_第1页
江苏省扬州市翠岗2024年中考二模数学试题含解析_第2页
江苏省扬州市翠岗2024年中考二模数学试题含解析_第3页
江苏省扬州市翠岗2024年中考二模数学试题含解析_第4页
江苏省扬州市翠岗2024年中考二模数学试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省扬州市翠岗2024年中考二模数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是(

)A. B. C. D.2.在直角坐标系中,已知点P(3,4),现将点P作如下变换:①将点P先向左平移4个单位,再向下平移3个单位得到点P1;②作点P关于y轴的对称点P2;③将点P绕原点O按逆时针方向旋转90°得到点P3,则P1,P2,P3的坐标分别是()A.P1(0,0),P2(3,﹣4),P3(﹣4,3)B.P1(﹣1,1),P2(﹣3,4),P3(4,3)C.P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)D.P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)3.若分式的值为0,则x的值为()A.-2 B.0 C.2 D.±24.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则∠C与∠D的大小关系为()A.∠C>∠D B.∠C<∠D C.∠C=∠D D.无法确定5.下列计算正确的是()A.x2+x3=x5 B.x2•x3=x5 C.(﹣x2)3=x8 D.x6÷x2=x36.如图,数轴上的四个点A,B,C,D对应的数为整数,且AB=BC=CD=1,若|a|+|b|=2,则原点的位置可能是()A.A或B B.B或C C.C或D D.D或A7.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16C.q≤4 D.q≥48.一、单选题如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A. B. C. D.9.如右图是用八块完全相同的小正方体搭成的几何体,从正面看几何体得到的图形是()A. B.C. D.10.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm11.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为()A.(1,4) B.(7,4) C.(6,4) D.(8,3)12.下列四个几何体中,主视图是三角形的是()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数(单位:分)及方差S2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是_____.甲乙丙丁7887s211.20.91.814.关于x的一元二次方程ax2﹣x﹣=0有实数根,则a的取值范围为________.15.已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_______.16.在平面直角坐标系中,智多星做走棋的游戏,其走法是:棋子从原点出发,第1步向上走1个单位,第2步向上走2个单位,第3步向右走1个单位,第4步向上走1个单位……依此类推,第n步的走法是:当n被3除,余数为2时,则向上走2个单位;当走完第2018步时,棋子所处位置的坐标是_____17.如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则=______.18.若圆锥的母线长为4cm,其侧面积,则圆锥底面半径为cm.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图矩形ABCD中AB=6,AD=4,点P为AB上一点,把矩形ABCD沿过P点的直线l折叠,使D点落在BC边上的D′处,直线l与CD边交于Q点.(1)在图(1)中利用无刻度的直尺和圆规作出直线l.(保留作图痕迹,不写作法和理由)(2)若PD′⊥PD,①求线段AP的长度;②求sin∠QD′D.20.(6分)某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A,B两种型号的电风扇的销售单价.(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.21.(6分)如图,在□ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形.(1)求证:四边形ABCD是菱形.(2)若AC=8,AB=5,求ED的长.22.(8分)A,B两地相距20km.甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发.设甲的骑行时间为x(h)(0≤x≤2)(1)根据题意,填写下表:时间x(h)与A地的距离0.51.8_____甲与A地的距离(km)520乙与A地的距离(km)012(2)设甲,乙两人与A地的距离为y1(km)和y2(km),写出y1,y2关于x的函数解析式;(3)设甲,乙两人之间的距离为y,当y=12时,求x的值.23.(8分)某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入-进货成本)求A,B两种型号的电风扇的销售单价.若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.24.(10分)如图,在△ABC中,AB=AC=4,∠A=36°.在AC边上确定点D,使得△ABD与△BCD都是等腰三角形,并求BC的长(要求:尺规作图,保留作图痕迹,不写作法)25.(10分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.①若该公司当月卖出3部汽车,则每部汽车的进价为万元;②如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)26.(12分)已知关于的二次函数(1)当时,求该函数图像的顶点坐标.(2)在(1)条件下,为该函数图像上的一点,若关于原点的对称点也落在该函数图像上,求的值(3)当函数的图像经过点(1,0)时,若是该函数图像上的两点,试比较与的大小.27.(12分)太原市志愿者服务平台旨在弘扬“奉献、关爱、互助、进步”的志愿服务精神,培育志思服务文化,推动太原市志愿服务的制度化、常态化,弘扬社会正能量,截止到2018年5月9日16:00,在该平台注册的志愿组织数达2678个,志愿者人数达247951人,组织志愿活动19748次,累计志愿服务时间3889241小时,学校为了解共青团员志愿服务情况,调查小组根据平台数据进行了抽样问卷调查,过程如下:(1)收集、整理数据:从九年级随机抽取40名共青团员,将其志愿服务时间按如下方式分组(A:0~5小时;B:5~10小时;C:10~15小时;D:15~20小时;E:20~25小时;F:25~30小时,注:每组含最小值,不含最大值)得到这40名志愿者服务时间如下:BDEACEDBFCDDDBECDEEFAFFADCDBDFCFDECEEECE并将上述数据整理在如下的频数分布表中,请你补充其中的数据:志愿服务时间ABCDEF频数34107(2)描述数据:根据上面的频数分布表,小明绘制了如下的频数直方图(图1),请将空缺的部分补充完整;(3)分析数据:①调查小组从八年级共青团员中随机抽取40名,将他们的志愿服务时间按(1)题的方式整理后,画出如图2的扇形统计图.请你对比八九年级的统计图,写出一个结论;②校团委计划组织志愿服务时间不足10小时的团员参加义务劳动,根据上述信息估计九年级200名团员中参加此次义务劳动的人数约为人;(4)问题解决:校团委计划组织中考志愿服务活动,共甲、乙、丙三个服务点,八年级的小颖和小文任意选择一个服务点参与志服务,求两人恰好选在同一个服务点的概率.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】【分析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明S△OCD=S△ACD,S△OEF=S△AEF,则S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆,即可求解.【详解】作直径CG,连接OD、OE、OF、DG.∵CG是圆的直径,∴∠CDG=90°,则DG==8,又∵EF=8,∴DG=EF,∴,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=π×52=,故选A.【点睛】本题考查扇形面积的计算,圆周角定理.本题中找出两个阴影部分面积之间的联系是解题的关键.2、D【解析】

把点P的横坐标减4,纵坐标减3可得P1的坐标;让点P的纵坐标不变,横坐标为原料坐标的相反数可得P2的坐标;让点P的纵坐标的相反数为P3的横坐标,横坐标为P3的纵坐标即可.【详解】∵点P(3,4),将点P先向左平移4个单位,再向下平移3个单位得到点P1,∴P1的坐标为(﹣1,1).∵点P关于y轴的对称点是P2,∴P2(﹣3,4).∵将点P绕原点O按逆时针方向旋转90°得到点P3,∴P3(﹣4,3).故选D.【点睛】本题考查了坐标与图形的变化;用到的知识点为:左右平移只改变点的横坐标,左减右加,上下平移只改变点的纵坐标,上加下减;两点关于y轴对称,纵坐标不变,横坐标互为相反数;(a,b)绕原点O按逆时针方向旋转90°得到的点的坐标为(﹣b,a).3、C【解析】由题意可知:,解得:x=2,故选C.4、A【解析】

直接利用圆周角定理结合三角形的外角的性质即可得.【详解】连接BE,如图所示:

∵∠ACB=∠AEB,

∠AEB>∠D,

∴∠C>∠D.

故选:A.【点睛】考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键.5、B【解析】分析:直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案.详解:A、不是同类项,无法计算,故此选项错误;B、正确;C、故此选项错误;D、故此选项错误;故选:B.点睛:此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.6、B【解析】

根据AB=BC=CD=1,|a|+|b|=2,分四种情况进行讨论判断即可.【详解】∵AB=BC=CD=1,∴当点A为原点时,|a|+|b|>2,不合题意;当点B为原点时,|a|+|b|=2,符合题意;当点C为原点时,|a|+|b|=2,符合题意;当点D为原点时,|a|+|b|>2,不合题意;故选:B.【点睛】此题主要考查了数轴以及绝对值,解题时注意:数轴上某个数与原点的距离叫做这个数的绝对值.7、A【解析】∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△>0,即82-4q>0,∴q<16,故选A.8、D【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.9、B【解析】

找到从正面看所得到的图形即可,注意所有从正面看到的棱都应表现在主视图中.【详解】解:从正面看该几何体,有3列正方形,分别有:2个,2个,2个,如图.故选B.【点睛】本题考查了三视图的知识,主视图是从物体的正面看到的视图,属于基础题型.10、C【解析】∵DG是AB边的垂直平分线,∴GA=GB,△AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,∴△ABC的周长=AC+BC+AB=51cm,故选C.11、B【解析】如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P的坐标为(7,4).故选C.12、D【解析】

主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.【详解】解:主视图是三角形的一定是一个锥体,只有D是锥体.故选D.【点睛】此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、丙【解析】

先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.【详解】因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故答案为丙.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.14、a≥﹣1且a≠1【解析】

利用一元二次方程的定义和判别式的意义得到≠1且△=(﹣1)2﹣4a•(﹣)≥1,然后求出两个不等式的公共部分即可.【详解】根据题意得a≠1且△=(﹣1)2﹣4a•(﹣)≥1,解得:a≥﹣1且a≠1.故答案为a≥﹣1且a≠1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2﹣4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.15、16或1【解析】

题目给出等腰三角形有两条边长为5和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】(1)当三角形的三边是5,5,6时,则周长是16;(2)当三角形的三边是5,6,6时,则三角形的周长是1;故它的周长是16或1.

故答案为:16或1.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.16、(672,2019)【解析】分析:按照题目给定的规则,找到周期,由题意可得每三步是一个循环,所以只需要计算2018被3除,就可以得到棋子的位置.详解:解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右1个单位,向上3个单位,∵2018÷3=672…2,∴走完第2018步,为第673个循环组的第2步,所处位置的横坐标为672,纵坐标为672×3+3=2019,∴棋子所处位置的坐标是(672,2019).故答案为:(672,2019).点睛:周期问题解决问题的核心是要找到最小正周期,然后把给定的数(一般是一个很大的数)除以最小正周期,余数是几,就是第几步,特别余数是1,就是第一步,余数是0,就是最后一步.17、3﹣【解析】

首先设点B的横坐标,由点B在抛物线y1=x2(x≥0)上,得出点B的坐标,再由平行,得出A和C的坐标,然后由CD平行于y轴,得出D的坐标,再由DE∥AC,得出E的坐标,即可得出DE和AB,进而得解.【详解】设点B的横坐标为,则∵平行于x轴的直线AC∴又∵CD平行于y轴∴又∵DE∥AC∴∴∴=3﹣【点睛】此题主要考查抛物线中的坐标求解,关键是利用平行的性质.18、3【解析】∵圆锥的母线长是5cm,侧面积是15πcm2,∴圆锥的侧面展开扇形的弧长为:l==6π,∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r==3cm,三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)见解析;(2)【解析】

(1)根据题意作出图形即可;(2)由(1)知,PD=PD′,根据余角的性质得到∠ADP=∠BPD′,根据全等三角形的性质得到AD=PB=4,得到AP=2;根据勾股定理得到PD==2,根据三角函数的定义即可得到结论.【详解】(1)连接PD,以P为圆心,PD为半径画弧交BC于D′,过P作DD′的垂线交CD于Q,则直线PQ即为所求;(2)由(1)知,PD=PD′,∵PD′⊥PD,∴∠DPD′=90°,∵∠A=90°,∴∠ADP+∠APD=∠APD+∠BPD′=90°,∴∠ADP=∠BPD′,在△ADP与△BPD′中,,∴△ADP≌△BPD′,∴AD=PB=4,AP=BD′∵PB=AB﹣AP=6﹣AP=4,∴AP=2;∴PD==2,BD′=2∴CD′=BC-BD′=4-2=2∵PD=PD′,PD⊥PD′,∵DD′=PD=2,∵PQ垂直平分DD′,连接QD′则DQ=D′Q∴∠QD′D=∠QDD′∴sin∠QD′D=sin∠QDD′=.【点睛】本题考查了作图-轴对称变换,矩形的性质,折叠的性质,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.20、(1)A,B两种型号电风扇的销售单价分别为250元/台、210元/台;(2)A种型号的电风扇最多能采购10台;(3)在(2)的条件下超市不能实现利润为1400元的目标.【解析】

(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台,根据金额不多余5400元,列不等式求解;(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.【详解】(1)设A,B两种型号电风扇的销售单价分别为x元/台、y元/台.依题意,得解得答:A,B两种型号电风扇的销售单价分别为250元/台、210元/台.(2)设采购A种型号的电风扇a台,则采购B种型号的电风扇(30-a)台.依题意,得200a+170(30-a)≤5400,解得a≤10.答:A种型号的电风扇最多能采购10台.(3)依题意,有(250-200)a+(210-170)(30-a)=1400,解得a=20.∵a≤10,∴在(2)的条件下超市不能实现利润为1400元的目标.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.21、(1)证明见解析(2)4-3【解析】试题分析:(1)根据等边三角形的性质,可得EO⊥AC,即BD⊥AC,根据平行四边形的对角线互相垂直可证菱形,(2)根据平行四边形的对角线互相平分可得AO=CO,BO=DO,再根据△EAC是等边三角形可以判定EO⊥AC,并求出EA的长度,然后在Rt△ABO中,利用勾股定理列式求出BO的长度,即DO的长度,在Rt△AOE中,根据勾股定理列式求出EO的长度,再根据ED=EO-DO计算即可得解.试题解析:(1)∵四边形ABCD是平行四边形,∴AO=CO,DO=BO,∵△EAC是等边三角形,EO是AC边上中线,∴EO⊥AC,即BD⊥AC,∴平行四边形ABCD是是菱形.(2)∵平行四边形ABCD是是菱形,∴AO=CO==4,DO=BO,∵△EAC是等边三角形,∴EA=AC=8,EO⊥AC,在Rt△ABO中,由勾股定理可得:BO=3,∴DO=BO=3,在Rt△EAO中,由勾股定理可得:EO=4∴ED=EO-DO=4-3.22、(1)18,2,20(2)(3)当y=12时,x的值是1.2或1.6【解析】

(Ⅰ)根据路程、时间、速度三者间的关系通过计算即可求得相应答案;(Ⅱ)根据路程=速度×时间结合甲、乙的速度以及时间范围即可求得答案;(Ⅲ)根据题意,得,然后分别将y=12代入即可求得答案.【详解】(Ⅰ)由题意知:甲、乙二人平均速度分别是平均速度为10km/h和40km/h,且比甲晚1.5h出发,当时间x=1.8时,甲离开A的距离是10×1.8=18(km),当甲离开A的距离20km时,甲的行驶时间是20÷10=2(时),此时乙行驶的时间是2﹣1.5=0.5(时),所以乙离开A的距离是40×0.5=20(km),故填写下表:(Ⅱ)由题意知:y1=10x(0≤x≤1.5),y2=;(Ⅲ)根据题意,得,当0≤x≤1.5时,由10x=12,得x=1.2,当1.5<x≤2时,由﹣30x+60=12,得x=1.6,因此,当y=12时,x的值是1.2或1.6.【点睛】本题考查了一次函数的应用,理清题意,弄清各数量间的关系是解题的关键.23、(1)A,B两种型号电风扇的销售单价分别为250元/台、210元/台;(2)A种型号的电风扇最多能采购10台;(3)在(2)的条件下超市不能实现利润为1400元的目标.【解析】

(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台,根据金额不多余5400元,列不等式求解;(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.【详解】(1)设A,B两种型号电风扇的销售单价分别为x元/台、y元/台.依题意,得解得答:A,B两种型号电风扇的销售单价分别为250元/台、210元/台.(2)设采购A种型号的电风扇a台,则采购B种型号的电风扇(30-a)台.依题意,得200a+170(30-a)≤5400,解得a≤10.答:A种型号的电风扇最多能采购10台.(3)依题意,有(250-200)a+(210-170)(30-a)=1400,解得a=20.∵a≤10,∴在(2)的条件下超市不能实现利润为1400元的目标.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.24、【解析】

作BD平分∠ABC交AC于D,则△ABD、△BCD、△ABC均为等腰三角形,依据相似三角形的性质即可得出BC的长.【详解】如图所示,作BD平分∠ABC交AC于D,则△ABD、△BCD、△ABC均为等腰三角形,∵∠A=∠CBD=36°,∠C=∠C,∴△ABC∽△BDC,∴,设BC=BD=AD=x,则CD=4﹣x,∵BC2=AC×CD,∴x2=4×(4﹣x),解得x1=,x2=(舍去),∴BC的长.【点睛】本题主要考查了复杂作图以及相似三角形的判定与性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.25、解:(1)22.1.(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为:21-[27-0.1(x-1)]=(0.1x+0.9)(万元),当0≤x≤10,根据题意,得x·(0.1x+0.9)+0.3x=12,整理,得x2+14x-120=0,解这个方程,得x1=-20(不合题意,舍去),x2=2.当x>10时,根据题意,得x·(0.1x+0.9)+x=12,整理,得x2+19x-120=0,解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论