


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的对称性总结函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。一、
函数自身的对称性探究定理1.函数y=f(x)的图像关于点A(a,b)对称的充要条件是f(x)+f(2a-x)=2b。(“若f(x)+f(2a-x)=2b,则函数y=f(x)的图像关于点A(a,b)对称”命题正确,且“若数y=f(x)的图像关于点A(a,b)对称,则f(x)+f(2a-x)=2b成立”逆命题也正确,则称“函数y=f(x)的图像关于点A(a,b)对称的充要条件是f(x)+f(2a-x)=2b”。)证明:(必要性)设点P(x,y)是y=f(x)图像上任一点,∵点P(x,y)关于点A(a,b)的对称点P'(2a-x,2b-y)也在y=f(x)图像上,∴2b-y=f(2a-x)即y+f(2a-x)=2b故f(x)+f(2a-x)=2b,必要性得证。(充分性)设点P(x0,y0)是y=f(x)图像上任一点,则y0=f(x0)∵f(x)+f(2a-x)=2b∴f(x0)+f(2a-x0)=2b,即2b-y0=f(2a-x0)。故点P'(2a-x0,2b-y0)也在y=f(x)图像上,而点P与点P'关于点A(a,b)对称,充分性得征。推论:函数y=f(x)的图像关于原点O对称的充要条件是f(x)+f(-x)=0定理2.函数y=f(x)的图像关于直线x=a对称的充要条件是f(a+x)=f(a-x)即f(x)=f(2a-x)
。证明:(必要性)设点P(x,y)是y=f(x)图像上任一点,∵点P(x,y)关于点直线x=a的对称点P'(2a-x,y)也在y=f(x)图像上,∴y=f(2a-x),故f(x)=f(2a-x),必要性得证。(充分性)设点P(x0,y0)是y=f(x)图像上任一点,则y0=f(x0)∵f(x)=f(2a-x)∴f(x0)=f(2a-x0),即y0=f(2a-x0)。故点P'(2a-x0,y0)也在y=f(x)图像上,而点P与点P'关于直线x=a对称,充分性得征.推论:函数y=f(x)的图像关于y轴对称的充要条件是f(x)=f(-x)定理3.①若函数y=f(x)图像同时关于点A(a,c)和点B(b,c)成中心对称(a≠b),则y=f(x)是周期函数,且2|a-b|是其一个周期。②若函数y=f(x)图像同时关于直线x=a和直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且2|a-b|是其一个周期。③若函数y=f(x)图像既关于点A(a,c)成中心对称又关于直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且4|a-b|是其一个周期。②的证明留给读者,以下给出①③的证明:①的证明:∵函数y=f(x)图像既关于点A(a,c)成中心对称,∴f(x)+f(2a-x)=2c,用2b-x代x得:f(2b-x)+f[2a-(2b-x)]=2c………………(*)∵函数y=f(x)图像既关于点Ab,c)成中心对称,∴f(x)+f(2b-x)=2c,∴f(2b-x)=2c-f(x)………………(**)代入(*)得2c-f(x)+f[2a-(2b-x)]=2c,∴f(x)=f[2a-(2b-x)]=f[2(a-b)+x)]则y=f(x)是周期函数,且2|a-b|是其一个周期。③的证明:∵函数y=f(x)图像既关于点A(a,c)成中心对称,∴f(x)+f(2a-x)=2c,用2b-x代x得:f(2b-x)+f[2a-(2b-x)]=2c………………(*)又∵函数y=f(x)图像直线x=b成轴对称,∴f(2b-x)=f(x)代入(*)得:f(x)=2c-f[2(a-b)+x]…………(**),用2(a-b)-x代x得f[2(a-b)+x]=2c-f[4(a-b)+x]代入(**)得:f(x)=f[4(a-b)+x],故y=f(x)是周期函数,且4|a-b|是其一个周期。二、
不同函数对称性的探究定理4.函数y=f(x)与y=2b-f(2a-x)的图像关于点A(a,b)成中心对称。设点P(x0,y0)是y=f(x)图像上任一点,则y0=f(x0)。记点P(x,y)关于点A(a,b)成中心对称点为P'(x1,y1),则x1+x0=2a,y1+y0=2b,∴x0=2a-x1,y0=2b-y1代入y0=f(x0)之中得2b-y1=f(2a-x1)∴y1=2b-f(2a-x1)∴点P'(x1,y1)在函数y=2b-f(2a-x)的图像上。同理可证:函数y=2b-f(2a-x)的图像上任一点关于点A(a,b)成中心对称点也在函数y=f(x)的图像上。故定理4成立。定理5.①函数y=f(x)与y=f(2a-x)的图像关于直线x=a成轴对称。②函数y=f(x)与a-x=f(a-y)的图像关于直线x+y=a成轴对称。③函数y=f(x)与x-a=f(y+a)的图像关于直线x-y=a成轴对称。②证明留给读者,现证定理5中的①③①的证明:设点P(x0,y0)是y=f(x)图像上任一点,则y0=f(x0)。记点P(x,y)关于直线x=a的轴对称点为P'(x1,y1),则x1+x0=2a,y1=y0,∴x0=2a-x1,y0=y1代入y0=f(x0)之中得y1=f(2a-x1)∴点P'(x1,y1)在函数y=f(2a-x)的图像上。同理可证:函数y=f(2a-x)的图像上任一点关于直线x=a的轴对称点也在函数y=f(x)的图像上。故定理5中的①成立。③的证明:设点P(x0,y0)是y=f(x)图像上任一点,则y0=f(x0)。记点P(x,y)关于直线x-y=a的轴对称点为P'(x1,y1),则x1=a+y0,y1=x0-a,∴x0=a+y1,y0=x1-a代入y0=f(x0)之中得x1-a=f(a+y1)∴点P'(x1,y1)在函数x-a=f(y+a)的图像上。同理可证:函数x-a=f(y+a)的图像上任一点关于直线x-y=a的轴对称点也在函数y=f(x)的图像上。故定理5中的③成立。推论:函数y=f(x)的图像与x=f(y)的图像关于直线x=y成轴对称。三、
三角函数图像的对称性列表函
数对称中心坐标对称轴方程y=sinx(kπ,0)x=kπ+π/2y=cosx(kπ+π/2,0)x=kπy=tanx(kπ/2,0)无注:①上表中k∈Z②y=tanx的所有对称中心坐标应该是(kπ/2,0),而在岑申、王而冶主编的浙江教育出版社出版的21世纪高中数学精编第一册(下)及陈兆镇主编的广西师大出版社出版的高一数学新教案(修订版)中都认为y=tanx的所有对称中心坐标是(kπ,0),这明显是错的。四、
函数对称性应用举例例1:定义在R上的非常数函数满足:f(10+x)为偶函数,且f(5-x)=f(5+x),则f(x)一定是(
)
(第十二届希望杯高二第二试题)(A)是偶函数,也是周期函数
(B)是偶函数,但不是周期函数(C)是奇函数,也是周期函数
(D)是奇函数,但不是周期函数解:∵f(10+x)为偶函数,∴f(10+x)=f(10-x).∴f(x)有两条对称轴x=5与x=10,因此f(x)是以10为其一个周期的周期函数,∴x=0即y轴也是f(x)的对称轴,因此f(x)还是一个偶函数。故选(A)例2:设定义域为R的函数y=f(x)、y=g(x)都有反函数,并且f(x-1)和g-1(x-2)函数的图像关于直线y=x对称,若g(5)=1999,那么f(4)=()。(A)
1999;(B)2000;(C)2001;(D)2002。解:∵y=f(x-1)和y=g-1(x-2)函数的图像关于直线y=x对称,∴y=g-1(x-2)反函数是y=f(x-1),而y=g-1(x-2)的反函数是:y=2+g(x),∴f(x-1)=2+g(x),∴有f(5-1)=2+g(5)=2001故f(4)=2001,应选(C)例3.设f(x)是定义在R上的偶函数,且f(1+x)=f(1-x),当-1≤x≤0时,f(x)=-x,则f(8.6)=_________
(第八届希望杯高二第一试题)解:∵f(x)是定义在R上的偶函数∴x=0是y=f(x)对称轴;又∵f(1+x)=f(1-x)∴x=1也是y=f(x)对称轴。故y=f(x)是以2为周期的周期函数,∴f(8.6)=f(8+0.6)=f(0.6)=f(-0.6)=0.3例4.设f(x)是定义在R上的奇函数,且f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7.5)=(
)(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天津仁爱学院《计算机系统的局限性》2023-2024学年第二学期期末试卷
- 排球正面上手发球 教学设计-2023-2024学年高一上学期体育与健康人教版必修第一册
- 阜阳职业技术学院《石油工程软件》2023-2024学年第二学期期末试卷
- 亿以内数的大小比较(教学设计)-2024-2025学年四年级上册数学人教版
- 西安电力高等专科学校《养羊学》2023-2024学年第二学期期末试卷
- 宁夏财经职业技术学院《文化史》2023-2024学年第二学期期末试卷
- 泰州2024年江苏泰兴市妇幼保健院招聘高层次人才2人(第2批)笔试历年参考题库附带答案详解
- 漯河医学高等专科学校《钢结构设计与施工》2023-2024学年第二学期期末试卷
- 鹤壁职业技术学院《建筑实训》2023-2024学年第二学期期末试卷
- 伊犁师范大学《融媒体监测技术》2023-2024学年第二学期期末试卷
- HRBP工作总结与计划
- 2025年湖南高速铁路职业技术学院高职单招语文2018-2024历年参考题库频考点含答案解析
- 2025年上半年中电科太力通信科技限公司招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2025年沙洲职业工学院高职单招语文2018-2024历年参考题库频考点含答案解析
- DB3502T052-2019 家政服务规范 家庭搬家
- 儿童故事绘本愚公移山课件模板
- 会计学专业数智化转型升级实践
- 中国糖尿病防治指南(2024版)解读-1
- 2024年计算机二级WPS考试题库(共380题含答案)
- 2024年德州职业技术学院单招职业适应性测试题库
- 跨学科实践活动10调查我国航天科技领域中新型材料新型能源的应用课件九年级化学人教版(2024)下册
评论
0/150
提交评论