下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次不等式恒成立问题[解析](1)要使mx2-mx-1<0恒成立,若m=0,显然-1<0;若m≠0,则eq\b\lc\{\rc\(\a\vs4\al\co1(m<0,,Δ=m2+4m<0))⇒-4<m<0.所以m的取值范围为(-4,0].(2)要使f(x)<-m+5在[1,3]上恒成立,只需mx2-mx+m<6恒成立(x∈[1,3]),又因为x2-x+1=eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(1,2)))2+eq\f(3,4)>0,所以m<eq\f(6,x2-x+1).令y=eq\f(6,x2-x+1)=eq\f(6,\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(1,2)))2+\f(3,4)).因为t=eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(1,2)))2+eq\f(3,4)在[1,3]上是增函数,所以y=eq\f(6,x2-x+1)在[1,3]上是减函数.因此函数的最小值ymin=eq\f(6,7).所以m的取值范围是eq\b\lc\(\rc\)(\a\vs4\al\co1(-∞,\f(6,7))).(3)将不等式f(x)<0整理成关于m的不等式为(x2-x)m-1<0.令g(m)=(x2-x)m-1,m∈[-1,1].则eq\b\lc\{\rc\(\a\vs4\al\co1(g-1<0,,g1<0,))即eq\b\lc\{\rc\(\a\vs4\al\co1(-x2+x-1<0,,x2-x-1<0,))解得eq\f(1-\r(5),2)<x<eq\f(1+\r(5),2),即x的取值范围为eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1-\r(5),2),\f(1+\r(5),2))).名师点拨:一元二次不等式恒成立问题1.在R上恒成立(1)一元二次不等式ax2+bx+c>0(或≥0)对于一切x∈R恒成立的条件是eq\b\lc\{\rc\(\a\vs4\al\co1(a>0,,Δ=b2-4ac<0或≤0.))(2)一元二次不等式ax2+bx+c<0(或≤0)对于一切x∈R恒成立的条件是eq\b\lc\{\rc\(\a\vs4\al\co1(a<0,,Δ=b2-4ac<0或≤0.))2.在给定某区间上恒成立(1)当x∈[m,n],f(x)=ax2+bx+c≥0恒成立,结合图象,只需f(x)min≥0即可.(2)当x∈[m,n],f(x)=ax2+bx+c≤0恒成立,只需f(x)max≤0即可.3.解决恒成立问题一定要搞清谁是自变量,谁是参数.一般地,知道谁的范围,谁就是自变量,求谁的范围,谁就是参数.4.“不等式f(x)≥0有解(或解集不空)的参数m的取值集合”是“f(x)<0恒成立的参数m取值集合”的补集;“f(x)>0的解集为∅”即“f(x)≤0恒成立.”注意:ax2+bx+c>0恒成立⇔eq\b\lc\{\rc\(\a\vs4\al\co1(a=b=0,,c>0))或eq\b\lc\{\rc\(\a\vs4\al\co1(a>0,,Δ=b2-4ac<0;))ax2+bx+c<0恒成立⇔eq\b\lc\{\rc\(\a\vs4\al\co1(a=b=0,,c<0))或eq\b\lc\{\rc\(\a\vs4\al\co1(a<0,,Δ=b2-4ac<0.))【变式训练】1.若不等式(a-3)x2+2(a-3)x-4<0对一切x∈R恒成立,则实数a取值的集合为(D)A.(-∞,3) B.(-1,3)C.[-1,3] D.(-1,3][解析]当a=3时,-4<0恒成立;当a≠3时,eq\b\lc\{\rc\(\a\vs4\al\co1(a<3,,Δ=4a-32+16a-3<0,))解得-1<a<3.所以-1<a≤3.故选D.2.(2024·山西忻州第一中学模拟)已知关于x的不等式x2-4x≥m对任意的x∈(0,1]恒成立,则有(A)A.m≤-3 B.m≥-3C.-3≤m<0 D.m≥-4[解析]令f(x)=x2-4x,x∈(0,1],∵f(x)图象的对称轴为直线x=2,∴f(x)在(0,1]上单调递减,∴当x=1时,f(x)取得最小值-3,∴m≤-3,故选A.3.已知对于任意的a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值总大于0,则x的取值范围是(B)A.{x|1<x<3} B.{x|x<1或x>3}C.{x|1<x<2} D.{x|x<1或x>2}[解析]记g(a)=(x-2)a+x2-4x+4,a∈[-1,1],依题意,只需eq\b\
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【教案】部编语文三上6 秋天的雨【国家级】一
- 2025届小升初语文总复习:非连续性文本阅读附答案解析
- 基础护理护理操作规范
- 《汽车租赁系统》课件
- 医疗个人先进事迹汇报
- 小学二年级数学100以内三数加减混合运算质量练习模拟题大全附答案
- 相关概念第二部分社会工作的内涵和实践领域社会保障社会
- 《电子商务效率》课件
- 养老现状及趋势智慧养老技术概论
- 共话新时代放飞青活动
- 国家太空安全
- 生态护林员日常巡护记录本、生态护林员工作职责
- 小记者第一课我是一名小记者
- 2024年总经理聘任书
- 部编版语文三年级上册第四单元教材解读大单元集体备课
- 二十届三中全会精神知识竞赛试题及答案
- 《生物安全培训》课件-2024鲜版
- 中国农业文化遗产与生态智慧智慧树知到期末考试答案章节答案2024年浙江农林大学
- 慢阻肺健康知识宣教完整版课件
- 神奇的大脑PPT课件
- 增值税预缴税款表电子版
评论
0/150
提交评论