2024高考数学一轮复习 直线和圆的方程 讲义_第1页
2024高考数学一轮复习 直线和圆的方程 讲义_第2页
2024高考数学一轮复习 直线和圆的方程 讲义_第3页
2024高考数学一轮复习 直线和圆的方程 讲义_第4页
2024高考数学一轮复习 直线和圆的方程 讲义_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

直线和圆的方程一一讲义

第01讲直线的倾斜角与斜率

【知识点梳理】

知识点一:直线的倾斜角

平面直角坐标系中,对于一条与X轴相交的直线,如果把X轴绕着交点按逆时针方向旋转到和直线重合时所转的最

小正角记为£,则«叫做直线的倾斜角.

规定:当直线和X轴平行或重合时,直线倾斜角为0,所以,倾斜角的范围是0<«<180.

知识点诠释:

1.要清楚定义中含有的三个条件

①直线向上方向;

②x轴正向;

③小于180的角.

2.从运动变化观点来看,直线的倾斜角是由x轴按逆时针方向旋转到与直线重合时所成的角.

3.倾斜角口的范围是0<(z<180.当a=0时,直线与x轴平行或与x轴重合.

4.直线的倾斜角描述了直线的倾斜程度,每一条直线都有唯一的倾斜角和它对应.

5.已知直线的倾斜角不能确定直线的位置,但是,直线上的一点和这条直线的倾斜角可以唯一确定直线的位置.

知识点二:直线的斜率

1.定义:

倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率,常用人表示,即左=tanc.

知识点诠释:

⑴当直线/与x轴平行或重合时,以=0。,左=30。=0;

(2)直线/与x轴垂直时,a=90°,左不存在.

由此可知,一条直线/的倾斜角夕一定存在,但是斜率人不一定存在.

2.直线的倾斜角,与斜率人之间的关系

由斜率的定义可知,当。在(0,90)范围内时,直线的斜率大于零;当"在(90,180)范围内时,直线的斜率小于

零;当&=0。时,直线的斜率为零;当以=90。时,直线的斜率不存在.直线的斜率与直线的倾斜角(90除外)为一一对

应关系,且在[0,90)和(90,180)范围内分别与倾斜角的变化方向一致,即倾斜角越大则斜率越大,反之亦然.因此

若需在[0,90)或(90,180)范围内比较倾斜角的大小只需比较斜率的大小即可,反之亦然.

知识点三:斜率公式

已知点片(工”必)、鸟(无2,%),且片△与X轴不垂直,过两点4(尤1,%)、鸟(%,%)的直线的斜率公式七—~■

知识点诠释:

1.对于上面的斜率公式要注意下面五点:

(1)当占=%时,公式右边无意义,直线的斜率不存在,倾斜角(Z=90。,直线与X轴垂直;

(2)左与片、鸟的顺序无关,即为,必和玉,马在公式中的前后次序可以同时交换,但分子与分母不能交换;

(3)斜率上可以不通过倾斜角而直接由直线上两点的坐标求得;

(4)当必=%时,斜率左=。,直线的倾斜角戊=0。,直线与x轴平行或重合;

(5)求直线的倾斜角可以由直线上两点的坐标先求斜率而得到.

2.斜率公式的用途:由公式可解决下列类型的问题:

(1)由《、鸟点的坐标求上的值;

(2)已知%及占,%,9,%中的三个量可求第四个量;

(3)已知上及《、鸟的横坐标(或纵坐标)可求|片心|;

(4)证明三点共线.

知识点四:两直线平行的条件

设两条不重合的直线,1,4的斜率分别为尢,《.若4/〃2,则与72的倾斜角%与相等•由4=。2,可得

tan%=tana2,即kt=k2.

因此,若/]/%,则左=心.

反之,若左=e,贝!J/]///

知识点诠释:

1.公式《。勺=区成立的前提条件是①两条直线的斜率存在分别为勺,&;②《与%不重合;

2.当两条直线的斜率都不存在且不重合时,/1与4的倾斜角都是90。,贝”"4.

知识点五:两直线垂直的条件

设两条直线44的斜率分别为《论.若…,则K-k2=-\.

知识点诠释:

1.公式/]J_4O%,左2=-1成立的前提条件是两条直线的斜率都存在;

2.当一条垂直直线的斜率不存在,另一条直线的斜率为0时,两条直线也垂直.

第02讲直线的方程

【知识点梳理】

知识点一:直线的点斜式方程

方程y—%=左。—%)由直线上一定点及其斜率决定,我们把y-%=Mx-%)叫做直线的点斜式方程,简称

点斜式.

知识点诠释:

1.点斜式方程是由直线上一点和斜率确定的,点斜式的前提是直线的斜率存在.点斜式不能表示平行于〉轴的直线,

即斜率不存在的直线;

2.当直线的倾斜角为0。时,直线方程为y=%;

3.当直线倾斜角为90°时,直线没有斜率,它的方程不能用点斜式表示.这时直线方程为:x=

4.k=-~也表示直线去掉一个点々jOo,%);y-y0=左(%-%))表示一条直线.

x-x0

知识点二:直线的斜截式方程

如果直线/的斜率为左,且与y轴的交点为(0力),根据直线的点斜式方程可得y-6=左(%-0),即丁=匕+4

我们把直线/与y轴的交点(0,6)的纵坐标人叫做直线/在y轴上的截距,方程y^kx+b由直线的斜率左与它在y轴

上的截距6确定,所以方程y=kx+b叫做直线的斜截式方程,简称斜截式.

知识点诠释:

Lb为直线/在y轴上截距,截距可以取一切实数,即可以为正数、零、负数;距离必须大于或等于零;

2.斜截式方程可由过点(0/)的点斜式方程得到;

3.当左时,斜截式方程就是一次函数的表示形式.

4.斜截式的前提是直线的斜率存在.斜截式不能表示平行于y轴的直线,即斜率不存在的直线.

5.斜截式是点斜式的特殊情况,在方程y=中,左是直线的斜率,沙是直线在y轴上的截距.

知识点三:直线的两点式方程

经过两点片(匹,%),£(无,必)(其中X]/》2,乃R必)的直线方程为———=-----L(%1W%2,%W%),称这个

为一%%2一石一

方程为直线的两点式方程,简称两点式.

知识点诠释:

1.这个方程由直线上两点确定;

2.当直线没有斜率(再=4)或斜率为0(乃=%)时,不能用两点式求出它的方程.

3.直线方程的表示与片(匹,必),舄(x2,乃)选择的顺序无关.

4.在应用两点式求直线方程时,往往把分式形式己二上=二泣(玉%W丫2)通过交叉相乘转化为整式形

%—X%—%

式"—%)(%—玉)=(%—%)(%—为),从而得到的方程中,包含了再=%或%=%的情况,但此转化过程不是一

个等价的转化过程,不能因此忽略由王、九2和%、%是否相等引起的讨论.要避免讨论,可直接假设两点式的整式

形式.

知识点四:直线的截距式方程

若直线/与X轴的交点为A(a,O),与y轴的交点为5(0,。),其中则过AB两点的直线方程为

-+2=1,这个方程称为直线的截距式方程.。叫做直线在无轴上的截距,。叫做直线在y轴上的截距.

ab

知识点诠释:

1.截距式的条件是a#0力w0,即截距式方程不能表示过原点的直线以及不能表示与坐标轴平行的直线.

2.求直线在坐标轴上的截距的方法:令x=0得直线在y轴上的截距;令尸0得直线在x轴上的截距.

知识点五:直线方程几种表达方式的选取

在一般情况下,使用斜截式比较方便,这是因为斜截式只需要两个独立变数,而点斜式需要三个独立变数.在求

直线方程时,要根据给出的条件采用适当的形式.一般地,己知一点的坐标,求过这点的直线,通常采用点斜式,再

由其他条件确定斜率;已知直线的斜率,常用斜截式,再由其他条件确定在y轴上的截距;已知截距或两点选择截距

式或两点式.从结论上看,若求直线与坐标轴所围成的三角形的面积或周长,则选择截距式求解较方便,但不论选用

哪一种形式,都要注意各自的限制条件,以免遗漏.

知识点六:直线方程的一般式

关于尤和y的一次方程都表示一条直线.我们把方程写为Ac+5y+C=0,这个方程(其中A、8不全为零)叫做

直线方程的一般式.

知识点诠释:

1.A、B不全为零才能表示一条直线,若A、2全为零则不能表示一条直线.

Ar(A

当6。。时,方程可变形为y=——X--,它表示过点0,——,斜率为-一的直线.

BBvBJB

C

当B=0,AwO时,方程可变形为Ax+C=。,即%=——,它表示一条与%轴垂直的直线.

A

由上可知,关于x、y的二元一次方程,它都表示一条直线.

2.在平面直角坐标系中,一个关于%、y的二元一次方程对应着唯一的一条直线,反过来,一条直线可以对应着

无数个关于%、y的一次方程.

知识点七:直线方程的不同形式间的关系

名称方程的形式常数的几何意义适用范围

点斜式(西,月)是直线上一定点,左是斜率不垂直于X轴

斜截式y=kx+b左是斜率,Z?是直线在y轴上的截距不垂直于X轴

两点式yr=.一=(*,%),(%,必)是直线上两定点不垂直于x轴和y轴

%一%马一玉

截距式二+11。是直线在X轴上的非零截距,〃是直线不垂直于x轴和y轴,

ab

在y轴上的非零截距且不过原点

2

一般式Ax+By+C=0(^+B丰0)A、B、。为系数任何位置的直线

直线方程的五种形式的比较如下表:

知识点诠释:

在直线方程的各种形式中,点斜式与斜截式是两种常用的直线方程形式,要注意在这两种形式中都要求直线存在

斜率,两点式是点斜式的特例,其限制条件更多(X]w%,xw必),应用时若采用

(%—玉)—(马—%)(y—凶)=。的形式,即可消除局限性.截距式是两点式的特例,在使用截距式时,首

先要判断是否满足“直线在两坐标轴上的截距存在且不为零”这一条件.直线方程的一般式包含了平面上的所有直线形

式.一般式常化为斜截式与截距式.若一般式化为点斜式,两点式,由于取点不同,得到的方程也不同.

知识点八:直线方程的综合应用

i.已知所求曲线是直线时,用待定系数法求.

2.根据题目所给条件,选择适当的直线方程的形式,求出直线方程.

对于两直线的平行与垂直,直线方程的形式不同,考虑的方向也不同.

(1)从斜截式考虑

已知直线4:y=kix+bi,l2:y=k2x+b2,

1〃[=>%=%=>%=k2(bxw.);

I、_LI?14一夕21=—tanOLy-.......k、­......k\k2——1

2tana2k2

于是与直线y=区+b平行的直线可以设为y^kx+b^垂直的直线可以设为y=--x+b.

k2

(2)从一般式考虑:

:+

§:4%+gy+G=°,,2B2y+C2=0

4_L,2o44+BIB2=0

/"//20AB2—=0且wo或31c2—耳。1WO,记忆式(4="/三)

7^B?C2

4与4重合,4不—44=。,AG—4G=°,用区2G=。

于是与直线Ax+为+C=0平行的直线可以设为Ax+6y+Q=0;垂直的直线可以设为&—Ay+0=0.

第03讲直线的交点坐标与距离公式

【知识点梳理】

知识点一:直线的交点

求两直线Ax+gy+G=o(44C片0)与Ax+^y+c2=O(AB2C2wo)的交点坐标,只需求两直线方程联

立所得方程组勺'1的解即可.若有?=」=一,则方程组有无穷多个解,此时两直线重合;若有

Ayx+B,y+C*2-0Ar,B、C?2

ABCAB

△='中二,则方程组无解,此时两直线平行;若有3#二,则方程组有唯一解,此时两直线相交,此解即两

452G4B2

直线交点的坐标.

知识点诠释:

求两直线的交点坐标实际上就是解方程组,看方程组解的个数.

知识点二:过两条直线交点的直线系方程

一般地,具有某种共同属性的一类直线的集合称为直线系,它的方程叫做直线系方程,直线系方程中除含有尤,y以

外,还有根据具体条件取不同值的变量,称为参变量,简称参数.由于参数取法不同,从而得到不同的直线系.

过两直线的交点的直线系方程:经过两直线/i:Ax+4y+G=0,/2:4》+32丁+02=0交点的直线方程为

A.x+B.y+q+A^x+B.y+C^^O,其中九是待定系数.在这个方程中,无论几取什么实数,都得不到

A>x+52y+C,=0»因此它不能表示直线

知识点三:两点间的距离公式

两点片(XQi),^^,%)间的距离公式为山£|=—年了+(%—%了.

知识点诠释:

此公式可以用来求解平面上任意两点之间的距离,它是所有求距离问题的基础,点到直线的距离和两平行直线之

间的距离均可转化为两点之间的距离来解决.另外在下一章圆的标准方程的推导、直线与圆、圆与圆的位置关系的判断

等内容中都有广泛应用,需熟练掌握.

知识点四:点到直线的距离公式

I+By。+Cl

11

点P(x0,y0)到直线Ax+By+C=0的距离为d=°,°.

VA2+B2

知识点诠释:

(1)点P(x0,%)到直线Ar+为+C=0的距离为直线上所有的点到已知点尸的距离中最小距离;

(2)使用点到直线的距离公式的前提条件是:把直线方程先化为一般式方程;

(3)此公式常用于求三角形的高、两平行线间的距离及下一章中直线与圆的位置关系的判断等.

知识点五:两平行线间的距离

本类问题常见的有两种解法:①转化为点到直线的距离问题,在任一条直线上任取一点,此点到另一条直线的距

离即为两直线之间的距离;②距离公式:直线Ax+3y+£=0与直线Ax+3y+G=0的距离为仁=:|c2-c.|.

VA2+B2

知识点诠释:

(1)两条平行线间的距离,可以看作在其中一条直线上任取一点,这个点到另一条直线的距离,此点一般可以取直

线上的特殊点,也可以看作是两条直线上各取一点,这两点间的最短距离;

Ic-CI

(2)利用两条平行直线间的距离公式d时,一定先将两直线方程化为一般形式,且两条直线中%,y

VA2+B2

的系数分别是相同的以后,才能使用此公式.

第04讲圆的方程

【知识点梳理】

知识点一:圆的标准方程

(x—a)2+(y—4=/,其中。(。力)为圆心,厂为半径.

知识点诠释:

(1)如果圆心在坐标原点,这时4=0力=0,圆的方程就是好+/=,.有关图形特征与方程的转化:如:圆心在

无轴上:。=0;圆与y轴相切时:|a|=r;圆与无轴相切时:\b\=r;与坐标轴相切时:\a\-\b\-r;过原点:a2+b2=r2

⑵圆的标准方程^—0了+⑶—/^二尸一圆心为⑺力),半径为厂,它显现了圆的几何特点.

(3)标准方程的优点在于明确指出了圆心和半径.由圆的标准方程可知,确定一个圆的方程,只需要°、6、厂这三个

独立参数,因此,求圆的标准方程常用定义法和待定系数法.

知识点二:点和圆的位置关系

如果圆的标准方程为(x—a)2+(y—6)2=/,圆心为C(a,A),半径为厂,则有

⑴若点在圆上o|CM1=r=(%-«)2+(%-Z?)2=r~

(2)若点〃(%,%)在圆外o|CM|>r-fl)2+(%—人J>r~

(3)若点%)在圆内<»|CM\<r=(%-«)2+(%-Z?)2<r2

知识点三:圆的一般方程

当D2+E2—4F>0时,方程x?+y2+Dx+Ey+F—0叫做圆的一般方程.(——,—或]为圆心,

1«------------------------------

-yjD2+E2-4F为半径.

2

知识点诠释:

2

由方程/+/+瓜+£、+歹=0得1%+£D2+E2-4F

"4

nFDF

(1)当£)2+石2—4尸=0时,方程只有实数解X=-y,y=-y.它表示一个点(-y,--).

(2)当。?+E?—4尸<0时,方程没有实数解,因而它不表示任何图形.

(3)当加+62—4/>0时,可以看出方程表示以,为圆心,gB+E2—4F为半径的圆.

知识点四:用待定系数法求圆的方程的步骤

求圆的方程常用“待定系数法”用“待定系数法”求圆的方程的大致步骤是:

(1)根据题意,选择标准方程或一般方程.

(2)根据已知条件,建立关于a、b、r或。、E、E的方程组.

(3)解方程组,求出a、b、r或。、E、E的值,并把它们代入所设的方程中去,就得到所求圆的方程.

知识点五:轨迹方程

求符合某种条件的动点的轨迹方程,实质上就是利用题设中的几何条件,通过“坐标法”将其转化为关于变量羽y之

间的方程.

1.当动点满足的几何条件易于“坐标化”时,常采用直接法;当动点满足的条件符合某一基本曲线的定义(如圆)

时,常采用定义法;当动点随着另一个在已知曲线上的动点运动时,可采用代入法(或称相关点法).

2.求轨迹方程时,一要区分“轨迹”与“轨迹方程”;二要注意检验,去掉不合题设条件的点或线等.

3.求轨迹方程的步骤:

(1)建立适当的直角坐标系,用(x,y)表示轨迹(曲线)上任一点/的坐标;

(2)列出关于尤,y的方程;

(3)把方程化为最简形式;

(4)除去方程中的瑕点(即不符合题意的点);

(5)作答.

第05讲直线与圆、圆与圆的位置关系

【知识点梳理】

知识点一:直线与圆的位置关系

1.直线与圆的位置关系:

(1)直线与圆相交,有两个公共点;

(2)直线与圆相切,只有一个公共点;

(3)直线与圆相离,没有公共点.

2.直线与圆的位置关系的判定:

(1)代数法:

判断直线/与圆C的方程组成的方程组是否有解.如果有解,直线/与圆C有公共点.

有两组实数解时,直线/与圆c相交;

有一组实数解时,直线/与圆C相切;

无实数解时,直线/与圆c相离.

(2)几何法:

由圆C的圆心到直线/的距离d与圆的半径r的关系判断:

当d<r时,直线/与圆C相交;

当1=厂时,直线/与圆C相切;

当d>r时,直线/与圆C相离.

知识点诠释:

(1)当直线和圆相切时,求切线方程,一般要用到圆心到直线的距离等于半径,记住常见切线方程,可提高解题速

度;求切线长,一般要用到切线长、圆的半径、圆外点与圆心连线构成的直角三角形,由勾股定理解得.

(2)当直线和圆相交时,有关弦长的问题,要用到弦心距、半径和半弦构成的直角三角形,也是通过勾股定理解得,

有时还用到垂径定理.

(3)当直线和圆相离时,常讨论圆上的点到直线的距离问题,通常画图,利用数形结合来解决.

知识点二:圆的切线方程的求法

1.点又在圆上,如图.

法一:利用切线的斜率勺与圆心和该点连线的斜率心”

的乘积等于—1,即后1.

法二:圆心。到直线/的距离等于半径r.

2•点(%,%)在圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论