初一数学下册期末模拟综合试卷附答案_第1页
初一数学下册期末模拟综合试卷附答案_第2页
初一数学下册期末模拟综合试卷附答案_第3页
初一数学下册期末模拟综合试卷附答案_第4页
初一数学下册期末模拟综合试卷附答案_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初一数学下册期末模拟综合试卷附答案学校:__________姓名:__________班级:__________考号:__________一、选择题1.下列运算正确的是()A. B. C. D.2.下列四幅图中,和是同位角的是()A.①② B.③④ C.①②④ D.②③④3.不等式x﹣2≤0的解集在以下数轴表示中正确的是()A. B.C. D.4.x>﹣y,则下列不等式中成立的有()A.x+y<0 B.x﹣y>0 C.a2x>﹣a2y D.3x+3y>05.关于的不等式的解集如图所示,则的取值是()A. B. C. D.6.下列关于命题“若,则”的说法,正确的是()A.是真命题 B.是假命题,反例是“”C.是假命题,反例是“” D.是假命题,反例是“”7.规定:符号[x]叫做取整符号,它表示不超过x的最大整数,例如:[5]=5,[2.6]=2,[0.2]=0.现在有一列非负数a1,a2,a3,…,已知a1=0,当n≥2时,an=an﹣1+1﹣5([]﹣[]),则a2020的值为()A.1 B.2 C.3 D.48.如图,在ABC中,∠ACB=90°,∠B-∠A=10°,D是AB上一点,将ACD沿CD翻折后得到CED,边CE交AB于点F.若DEF中有两个角相等,则∠ACD的度数为()A.15°或20° B.20°或30° C.15°或30° D.15°或25°二、填空题9.若,则______.10.命题“若a+b>0,则a>0,b>0”是_____命题(填“真”或“假”).11.一个多边形的内角和是它的外角和的4倍,则这个多边形的边数是________.12.若当时,代数式的结果为,那么将分解因式的结果为______13.已知是方程组的解,则=____________14.如图,在一块长为am,宽为bm的长方形草地上,有一条弯曲的小路,小路的左边线向右平移1m就是它的右边线.则这块草地的绿地面积是___________m2.15.如果三角形两条边分别为3和5,则周长L的取值范围是________16.如图,AE平分∠BAC,AD⊥BC于点D,若∠ABC=40°,∠C=68°,则∠DAE=___.三、解答题17.计算:(1)﹣32+(﹣)﹣2﹣(π﹣5)0﹣|﹣2|;(2)(3a+2b)(3a﹣2b)﹣3a(a﹣2b).18.因式分解:①②19.解方程组:(1)(2)20.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得__________;(Ⅱ)解不等式②,得__________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为__________.21.如图,已知,(1)求证:(2)若平分,于点,,试求的度数22.某超市分别以每盏150元,190元的进价购进A,B两种品牌的护眼灯,下表是近两天的销售情况.销售日期销售数量(盏)销售收入(元)A品牌B品牌第一天21680第二天341670(1)求A,B两种品牌护眼灯的销售价;(2)若超市准备用不超过4900元的金额购进这两种品牌的护眼灯共30盏,求B品牌的护眼灯最多采购多少盏?23.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组,我们利用加减消元法,很快可以求得此方程组的解为;(2)如何解方程组呢?我们可以把m+5,n+3看成一个整体,设m+5=x,n+3=y,很快可以求出原方程组的解为;(3)由此请你解决下列问题:若关于m,n的方程组与有相同的解,求a、b的值.24.已知,如图:射线分别与直线、相交于、两点,的角平分线与直线相交于点,射线交于点,设,且.(1)________,________;直线与的位置关系是______;(2)如图,若点是射线上任意一点,且,试找出与之间存在一个什么确定的数量关系?并证明你的结论.(3)若将图中的射线绕着端点逆时针方向旋转(如图)分别与、相交于点和点时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由.25.(1)证明:两条平行线被第三条直线所截,一对同旁内角的角平分线互相垂直.已知:如图,AB∥CD,.求证:.证明:(2)如图,AB∥CD,点E、F分别在直线AB、CD上,EM∥FN,∠AEM与∠CFN的角平分线相交于点O.求证:EO⊥FO.(3)如图,AB∥CD,点E、F分别在直线AB、CD上,EM∥PN,MP∥NF,∠AEM与∠CFN的角平分线相交于点O,∠P=102°,求∠O的度数.【参考答案】一、选择题1.A解析:A【分析】根据合并同类项、同底数幂的乘法、幂的乘方、积的乘方等知识点进行判定即可.【详解】解:A.,选项符合题意;B.,选项不符合题意;C.,选项不符合题意;D.,选项不符合题意;故选A.【点睛】此题考查了整式的运算,涉及的知识有:合并同类项、同底数幂的乘法、幂的乘方、积的乘方的运算,熟练掌握运算法则是解本题的关键.2.C解析:C【分析】根据两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样的一对角叫做同位角进行分析即可.【详解】解:根据同位角的定义可知:图①②④中,∠1和∠2是同位角;图③中,∠1和∠2不是同位角;故选C.【点睛】本题主要考查同位角的定义,熟记同位角的定义是解决此题的关键.3.B解析:B【分析】根据解不等式,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.【详解】解:由x﹣2≤0,得x≤2,把不等式的解集在数轴上表示出来为:,故选:B.【点睛】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.D解析:D【分析】根据不等式的性质依次判断即可.【详解】∵x>-y,∴x+y>0,A错误;x﹣y不能判断是否大于0,B错误;当a=0时,C选项错误,D选项3x+3y>0正确,故选D.【点睛】此题主要考察不等式的性质,考虑到a=0是关键.5.A解析:A【分析】解关于x的不等式得出,由数轴知不等式的解集即可得出关于a的方程,解之即可.【详解】解:,移项,得:,系数化为1,得:,由题图可知,,,解得,.故选:A【点睛】本题主要考查解一元一次不等式,熟练掌握解一元一次不等式和一元一次方程的能力是解题的关键.6.C解析:C【分析】根据真假命题的定义判断,分清条件和结论,若为假命题,举反例时要满足:条件成立,但结论不成立.【详解】A.当时,满足,但-1﹤0,所以为假命题,此选项错题;B.当,,不满足,此选项错误;C.当时,满足,但-2﹤1,假命题,此选项正确;D.当时,,不满足,此选项错误,故选:C.【点睛】本题考查真命题与假命题,熟练掌握命题真假的判断方法是解答的关键.7.D解析:D【分析】先由a1=0和当n≥2时,an=an-1+1-5([]﹣[]),求得:a2,a3,a4,a5,a6,a7的值,则可得规律:an每5次一循环,又由2020÷5=404,可知a2020=a5,则问题得解.【详解】解:∵a1=0,且当n≥2时,满足an=an-1+1-5([]﹣[]),∴a2=0+1-5([]﹣[])=0+1-5([]﹣[])=0+1-5×(0-0)=1,a3=1+1-5([]﹣[])=1+1-5([]﹣[])=1+1-5×(0-0)=2,a4=2+1-5([]﹣[])=2+1-5([]﹣[])=2+1-5×(0-0)=3,a5=3+1-5([]﹣[])=3+1-5([]﹣[])=3+1-5×(0-0)=4,a6=4+1-5([]﹣[])=4+1-5([]﹣[])=4+1-5×(1-0)=0,a7=0+1-5([]﹣[])=0+1-5([]﹣[])=0+1-5×(1-1)=1,…,∴an每5次一循环,∵2020÷5=404,∴a2020=a5=4.故选D.【点睛】此题考查了新定义,以及数字的变化规律,解题的关键是找到规律:an每5次一循环.8.C解析:C【分析】由三角形的内角和定理可求解∠A=40°,设∠ACD=x°,则∠CDF=40°+x,∠ADC=180°-40°-x=140°-x,由折叠可知:∠ADC=∠CDE,∠E=∠A=40°,可分三种情况:当∠DFE=∠E=40°时;当∠FDE=∠E=40°时;当∠DFE=∠FDE时,根据∠ADC=∠CDE列方程,解方程可求解x值,即可求解.【详解】解:在△ABC中,∠ACB=90°,∴∠B+∠A=90°,∵∠B-∠A=10°,∴∠A=40°,∠B=50°,设∠ACD=x°,则∠CDF=40°+x,∠ADC=180°-40°-x=140°-x,由折叠可知:∠ADC=∠CDE,∠E=∠A=40°,当∠DFE=∠E=40°时,∵∠FDE+∠DFE+∠E=180°,∴∠FDE=180°-40°-40°=100°,∴140°-x=100°+40°+x,解得x=0(不存在);当∠FDE=∠E=40°时,∴140°-x=40°+40°+x,解得x=30°,即∠ACD=30°;当∠DFE=∠FDE时,∵∠FDE+∠DFE+∠E=180°,∴∠FDE==70°,∴140°-x=70°+40°+x,解得x=15,即∠ACD=15°,综上,∠ACD=15°或30°,故选:C.【点睛】本题主要考查直角三角形的性质,等腰三角形的性质,三角形的内角和定理,根据∠ADC=∠CDE分三种情况列方程是解题的关键.二、填空题9.【分析】先根据单项式乘以单项式法则进行计算,再根据幂的乘方和积的乘方进行变形,最后代入求出即可.【详解】∵ab3=−2,∴−6a2b6=−6(ab3)2=−6×(−2)2=−24,故答案为:−24.【点睛】本题考查了单项式乘以单项式,幂的乘方和积的乘方等知识点,能正确根据积的乘方和幂的乘方进行变形是解此题的关键.10.假【分析】利用有理数的加法法则,举反例即可判断命题的正误.【详解】当a=2,b=﹣1,时,a+b﹥0成立,但a>0,b>0不成立,故此命题是假命题,故答案为:假.【点睛】本题主要考查命题的真假,解答的关键是熟悉判断命题真假的方法,即要判断命题的真假,需要看命题在其条件的约束下,结论是否一定成立.11.十【分析】设这个多边形有条边,则其内角和为外角和为再根据题意列方程可得答案.【详解】解:设这个多边形有条边,则其内角和为外角和为故答案为:十.【点睛】本题考查的是多边形的内角和与外角和,掌握利用多边形的内角和与外角和定理列一元一次方程解决问题是解题的关键.12.【解析】【分析】先根据因式分解的意义和已知设=x(x-17)(3x+a),利用多项式乘以多项式的法则进行计算,列方程组可得结论.【详解】当x=17时,代数式3x3-56x2+85x的结果为0设=x(x-17)(3x+a)=x(3x2-51x+ax-17a)∴x(3x2-56x+85)=x(3x2-51x+ax-17a),解得:a=-5,∴=x(x-17)(3x-5),故答案为:.【点睛】本题主要考查了十字相乘法分解因式和提公因式,关键是理解和掌握分解因式和整式的乘法是互逆运算.13.【分析】把代入到方程组中得到关于的方程组,求出的值,再求出的值即可.【详解】解:∵是方程组的解,∴,解得:,∴,故答案为:.【点睛】本难主要考查了二元一次方程组的解,解二元一次方程组和求代数式的值,明白解的定义和正确求出的值是解决此题的关键.14.b(a-1)【分析】根据小路的左边线向右平移1m就是它的右边线,可得路的宽度是1米,根据平移,可把路移到左边,再根据矩形的面积公式,可得答案.【详解】解:小路的左边线向右平移1m就是它的右边线,路的宽度是1米,草地的长是(a-1)米,故这块草地的绿地面积为(a-1)b(m2).故答案为:b(a-1).【点睛】本题主要考查了生活中的平移现象,利用矩形的面积公式得出是解题关键.15.10<L<16【分析】根据三角形的三边关系确定第三边的取值范围,再根据不等式的性质求出答案.【详解】设第三边长为x,∵有两条边分别为3和5,∴5-3<x<5+3,解得2<x<8,∴2解析:10<L<16【分析】根据三角形的三边关系确定第三边的取值范围,再根据不等式的性质求出答案.【详解】设第三边长为x,∵有两条边分别为3和5,∴5-3<x<5+3,解得2<x<8,∴2+3+5<x+3+5<8+3+5,∵周长L=x+3+5,∴10<L<16,故答案为:10<L<16.【点睛】此题考查三角形三边关系,不等式的性质,熟记三角形的三边关系确定出第三条边长是解题的关键.16.14°【分析】根据三角形内角和定理求出∠BAC,根据角平分线的定义求出∠EAC,求出∠DAC,再求出答案即可.【详解】解:∵∠ABC=40°,∠C=68°,∴∠BAC=180°−∠ABC−解析:14°【分析】根据三角形内角和定理求出∠BAC,根据角平分线的定义求出∠EAC,求出∠DAC,再求出答案即可.【详解】解:∵∠ABC=40°,∠C=68°,∴∠BAC=180°−∠ABC−∠C=72°,∵AE平分∠BAC,∴∠EAC=∠BAC=36°,∵AD是△ABC的BC边上的高,∴∠ADC=90°,∵∠C=68°,∴∠DAC=90°−∠C=22°,∴∠DAE=∠EAC−∠DAC=36°−22°=14°,故答案是:14°.【点睛】本题考查了三角形内角和定理,角平分线的定义,三角形的高定义等知识点,能求出∠EAC的度数是解此题的关键.三、解答题17.(1)-8;(2)6a2+6ab-4b2【分析】(1)先逐项化简,再算加减即可;(2)先根据平方差公式、单项式与多项式的乘法法则计算,再去括号合并同类项.【详解】解:(1)原式=-9+4-解析:(1)-8;(2)6a2+6ab-4b2【分析】(1)先逐项化简,再算加减即可;(2)先根据平方差公式、单项式与多项式的乘法法则计算,再去括号合并同类项.【详解】解:(1)原式=-9+4-1-2=-8;(2)原式=9a2-4b2-(3a2-6ab)=9a2-4b2-3a2+6ab=6a2-4b2+6ab.【点睛】本题考查了有理数的混合运算,零指数幂和负整数指数幂的意义,以及整式的混合运算,熟练掌握运算法则是解答本题的关键.18.①x(x+2y)(x-2y);②(x+y-1)(x-y+1)【分析】①先提取公因式,然后运用平方差公式因式分解即可;②先运用完全平方公式将括号里因式分解,然后运用平方差公式因式分解即可.【详解析:①x(x+2y)(x-2y);②(x+y-1)(x-y+1)【分析】①先提取公因式,然后运用平方差公式因式分解即可;②先运用完全平方公式将括号里因式分解,然后运用平方差公式因式分解即可.【详解】解:①;②.【点睛】本题考查了提公因式法因式分解与公式法因式分解,熟知乘法公式的结构特点是解题的关键.19.(1);(2).【分析】(1)方程组利用加减消元求出解即可;(2)方程组整理后,利用加减消元求出解即可.【详解】(1)①得:③②③得:将代入①得:(2)解:方程组整理得:解析:(1);(2).【分析】(1)方程组利用加减消元求出解即可;(2)方程组整理后,利用加减消元求出解即可.【详解】(1)①得:③②③得:将代入①得:(2)解:方程组整理得:得:③②③得:将代入①得:.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元与加减消元.20.;;见解析;【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;解析:;;见解析;【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来,如图:(Ⅳ)原不等式组的解集为.故答案为:;;见解析;.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(1)详见解析;(2)58°【分析】(1)由平行线的判定定理进行证明,即可得到结论成立;(2)由角平分线性质和平行线的性质,求出∠2的度数,然后即可求出的度数.【详解】(1)证明:∵∠1=解析:(1)详见解析;(2)58°【分析】(1)由平行线的判定定理进行证明,即可得到结论成立;(2)由角平分线性质和平行线的性质,求出∠2的度数,然后即可求出的度数.【详解】(1)证明:∵∠1=∠BDC∴AB//CD(同位角相等,两直线平行)∴∠2=∠ADC(两直线平行,内错角相等)∵∠2+∠3=180°∴∠ADC+∠3=180°(等量代换)∴AD//CE(同旁内角互补,两直线平行)(2)解:∵∠1=∠BDC,∠1=64°∴∠BDC=64°∵DA平分∠BDC∴∠ADC=∠BDC=32°(角平分线定义)∴∠2=∠ADC=32°(已证)又∵CE⊥AE∴∠AEC=90°(垂直定义)∵AD//CE(已证)∴∠DAF=∠AEC=90°(两直线平行,同位角相等)∴∠FAB=∠DAF-∠2=90°-32°=58°.【点睛】本题考查了平行线的判定和性质,角平分线的定义,以及余角的计算,解题的关键是熟练掌握所学的知识进行解题.22.(1)A品牌为210元/盏,B品牌为260元/盏.(2)10盏.【分析】(1)设A品牌护眼灯的销售价为x元/盏,B品牌护眼灯的销售价为y元/盏,根据总价=单价×数量结合两天的销售情况,即可得出关解析:(1)A品牌为210元/盏,B品牌为260元/盏.(2)10盏.【分析】(1)设A品牌护眼灯的销售价为x元/盏,B品牌护眼灯的销售价为y元/盏,根据总价=单价×数量结合两天的销售情况,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设采购m盏B品牌的护眼灯,则采购(30-m)盏A品牌的护眼灯,根据总价=单价×数量结合总费用不超过4900元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设A品牌护眼灯的销售价为x元/盏,B品牌护眼灯的销售价为y元/盏,依题意,得:,解得:.答:A品牌护眼灯的销售价为210元/盏,B品牌护眼灯的销售价为260元/盏.(2)设采购m盏B品牌的护眼灯,则采购(30-m)盏A品牌的护眼灯,依题意,得:150(30-m)+190m≤4900,解得:m≤10.答:B品牌的护眼灯最多采购10盏.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.销售日期销售数量(盏)销售收入(元)A品牌B品牌第一天21680第二天34167023.(1);(2);(3)a=3,b=2.【分析】(1)利用加减消元法,可以求得;(2)利用换元法,设m+5=x,n+3=y,则方程组化为(1)中的方程组,可求得x,y的值进一步可求出原方程组的解解析:(1);(2);(3)a=3,b=2.【分析】(1)利用加减消元法,可以求得;(2)利用换元法,设m+5=x,n+3=y,则方程组化为(1)中的方程组,可求得x,y的值进一步可求出原方程组的解;(3)把am和bn当成一个整体利用已知条件可求出am和bn,再把bn代入2m-bn=-2中求出m的值,然后把m的值代入3m+n=5可求出n的值,继而可求出a、b的值.【详解】解:(1)两个方程相加得,∴,把代入得,∴方程组的解为:;故答案是:;(2)设m+5=x,n+3=y,则原方程组可化为,由(1)可得:,∴m+5=1,n+3=2,∴m=-4,n=-1,∴,故答案是:;(3)由方程组与有相同的解可得方程组,解得,把bn=4代入方程2m﹣bn=﹣2得2m=2,解得m=1,再把m=1代入3m+n=5得3+n=5,解得n=2,把m=1代入am=3得:a=3,把n=2代入bn=4得:b=2,所以a=3,b=2.【点睛】本题主要考查二元一次方程组的解法,重点是考查整体思想及换元法的应用,解题的关键是理解好整体思想.24.(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB∥CD;(2解析:(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB∥CD;(2)先根据内错角相等证GH∥PN,再根据同旁内角互补和等量代换得出∠FMN+∠GHF=180°;(3)作∠PEM1的平分线交M1Q的延长线于R,先根据同位角相等证ER∥FQ,得∠F

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论