安徽省屯溪第一中学2024届数学高一下期末经典模拟试题含解析_第1页
安徽省屯溪第一中学2024届数学高一下期末经典模拟试题含解析_第2页
安徽省屯溪第一中学2024届数学高一下期末经典模拟试题含解析_第3页
安徽省屯溪第一中学2024届数学高一下期末经典模拟试题含解析_第4页
安徽省屯溪第一中学2024届数学高一下期末经典模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省屯溪第一中学2024届数学高一下期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,若不等式恒成立,则t的最大值为()A.4 B.6 C.8 D.92.若数列的前n项的和,那么这个数列的通项公式为()A. B.C. D.3.若三棱锥的所有顶点都在球的球面上,平面,,,且三棱锥的体积为,则球的体积为()A. B. C. D.4.已知函数在区间上是增函数,且在区间上恰好取得一次最大值为2,则的取值范围是()A. B. C. D.5.三棱锥V-ABC中,VA=VB=AC=BC=2,AB=23,VC=1,则二面角V-AB-CA.30° B.45° C.60° D.90°6.已知,则的值域为A. B. C. D.7.已知集合A={x∈N|0≤x≤3},B={x∈R|-2<x<2}则A∩B()A.{0,1} B.{1} C.[0,1] D.[0,2)8.如图所示,4个散点图中,不适合用线性回归模型拟合其中两个变量的是()A. B.C. D.9.已知点在第二象限,角顶点为坐标原点,始边为轴的非负半轴,则角的终边落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.一个几何体的三视图如图所示,则该几何体的体积为()A.10 B.20 C.30 D.60二、填空题:本大题共6小题,每小题5分,共30分。11.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.12.已知一组数1,2,m,6,7的平均数为4,则这组数的方差为______.13.在△ABC中,sin2A=sin14.若的两边长分别为和,其夹角的余弦为,则其外接圆的面积为______________;15.英国物理学家和数学家艾萨克·牛顿(Isaacnewton,1643-1727年)曾提出了物体在常温环境下温度变化的冷却模型.现把一杯温水放在空气中冷却,假设这杯水从开始冷却,x分钟后物体的温度满足:(其中…为自然对数的底数).则从开始冷却,经过5分钟时间这杯水的温度是________(单位:℃).16.如图所示,E,F分别是边长为1的正方形的边BC,CD的中点,将其沿AE,AF,EF折起使得B,D,C三点重合.则所围成的三棱锥的体积为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知非零数列满足,.(1)求证:数列是等比数列;(2)若关于的不等式有解,求整数的最小值;(3)在数列中,是否存在首项、第项、第项(),使得这三项依次构成等差数列?若存在,求出所有的;若不存在,请说明理由.18.在一个盒子中装有6支圆珠笔,其中3支一等品,2支二等品和1支三等品,从中任取3支.求(1)恰有1支一等品的概率;(2)恰有两支一等品的概率;(3)没有三等品的概率.19.已知数列前项和为,,且满足().(Ⅰ)求数列的通项公式;(Ⅱ)若,设数列前项和为,求证:.20.已知圆C的方程是(x-1)2+(y-1)2=4,直线l的方程为y=x+m,求当m为何值时,(1)直线平分圆;(2)直线与圆相切.21.某校名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是,,,,,.求图中的值;根据频率分布直方图,估计这名学生的平均分;若这名学生的数学成绩中,某些分数段的人数与英语成绩相应分数段的人数之比如表所示,求英语成绩在的人数.分数段:51:21:1

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

因为不等式恒成立,所以只求得的最小值即可,结合,用“1”的代换求其最小值.【详解】因为,,,若不等式恒成立,令y=,当且仅当且即时,取等号所以所以故t的最大值为1.故选:C【点睛】本题主要考查不等式恒成立和基本不等式求最值,还考查了运算求解的能力,属于中档题.2、D【解析】试题分析:根据前n项和与其通项公式的关系式,an=当n≥2时,an=Sn-Sn-1=(3n-2)-(3n-1-2)=2•3n-1.当n=1时,a1=1,不满足上式;所以an=,故答案为an=,选D.考点:本题主要考查数列的求和公式,解题时要根据实际情况注意公式的灵活运用,属于中档题点评:解决该试题的关键是借助公式an=,将前n项和与其通项公式联系起来得到其通项公式的值.3、A【解析】

由的体积计算得高,已知将三棱锥的外接球,转化为长2,宽2,高的长方体的外接球,求出半径,可得答案.【详解】∵,,故三棱锥的底面面积为,由平面,得,又三棱锥的体积为,得,所以三棱锥的外接球,相当于长2,宽2,高的长方体的外接球,故球半径,得,故外接球的体积.故选:A.【点睛】本题考查了三棱锥外接球的体积,三棱锥体积公式的应用,根据已知计算出球的半径是解答的关键,属于中档题.4、D【解析】

化简函数为正弦型函数,根据题意,利用正弦函数的图象与性质求得的取值范围.【详解】解:函数则函数在上是含原点的递增区间;又因为函数在区间上是单调递增,则,得不等式组又因为,所以解得.又因为函数在区间上恰好取得一次最大值为2,可得,所以,综上所述,可得.故选:D.【点睛】本题主要考查了正弦函数的图像和性质应用问题,也考查了三角函数的灵活应用,属于中档题.5、C【解析】

取AB中点O,连结VO,CO,由等腰三角形的性质可得,VO⊥AB,CO⊥AB,∠VOC是二面角V-AB-C的平面角,由此利用余弦定理能求出二面角的平面角V-AB-C的度数.【详解】取AB中点O,连结VO,CO,∴三棱锥V-ABC中,VA=VB=AC=BC=2,AB=23所以VO⊥AB,CO⊥AB∴∠VOC是二面角V-AB-C的平面角,VO=VCO=B∴cos∴∠VOC=60∴二面角V-AB-C的平面角的度数为60∘【点睛】本题主要考查三棱锥的性质、二面角的求法,属于中档题.求二面角的大小既能考查线线垂直关系,又能考查线面垂直关系,同时可以考查学生的计算能力,是高考命题的热点,求二面角的方法通常有两个思路:一是利用空间向量,建立坐标系,这种方法优点是思路清晰、方法明确,但是计算量较大;二是传统方法,求出二面角平面角的大小,这种解法的关键是找到平面角.6、C【解析】

利用求函数的周期为,计算即可得到函数的值域.【详解】因为,,,因为函数的周期,所以函数的值域为,故选C.【点睛】本题考查函数的周期运算,及利用函数的周期性求函数的值域.7、A【解析】

可解出集合A,然后进行交集的运算即可.【详解】A={0,1,2,3},B={x∈R|﹣2<x<2};∴A∩B={0,1}.故选:A.【点睛】本题考查交集的运算,是基础题,注意A中x∈N8、A【解析】

根据线性回归模型建立方法,分析选项,找出散点比较分散且无任何规律的选项可得答案.【详解】根据题意,适合用线性回归拟合其中两个变量的散点图必须散点分布比较集中,且大体接近某一条直线,分析选项可得A选项的散点图杂乱无章,最不符合条件.故选A【点睛】本题考查了统计案例散点图,属于基础题.9、C【解析】

根据点的位置,得到不等式组,进行判断角的终边落在的位置.【详解】点在第二象限在第三象限,故本题选C.【点睛】本题考查了通过角的正弦值和正切值的正负性,判断角的终边位置,利用三角函数的定义是解题的关键.10、B【解析】

由三视图可知几何体为四棱锥,利用四棱锥体积公式可求得结果.【详解】由三视图可知,该几何体为底面为长为,宽为的长方形,高为的四棱锥四棱锥体积本题正确选项:【点睛】本题考查根据三视图求解几何体体积的问题,关键是能够通过三视图将几何体还原为四棱锥,从而利用棱锥体积公式来进行求解.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】应从丙种型号的产品中抽取件,故答案为1.点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即ni∶Ni=n∶N.12、【解析】

先根据平均数计算出的值,再根据方差的计算公式计算出这组数的方差.【详解】依题意.所以方差为.故答案为:.【点睛】本小题主要考查平均数和方差的有关计算,考查运算求解能力,属于基础题.13、π【解析】

根据正弦定理化简角的关系式,从而凑出cosA【详解】由正弦定理得:a2=则cos∵A∈0,π本题正确结果:π【点睛】本题考查利用正弦定理和余弦定理解三角形问题,属于基础题.14、【解析】

首先根据余弦定理求第三边,再求其对边的正弦值,最后根据正弦定理求半径和面积.【详解】设第三边为,,解得:,设已知两边的夹角为,,那么,根据正弦定理可知,,外接圆的面积.故填:.【点睛】本题简单考查了正余弦定理,考查计算能力,属于基础题型.15、45【解析】

直接利用对数的运算性质计算即可,【详解】.故答案为:45.【点睛】本题考查对数的运算性质,考查计算能力,属于基础题.16、【解析】

根据折叠后不变的垂直关系,结合线面垂直判定定理可得到为三棱锥的高,由此可根据三棱锥体积公式求得结果.【详解】设点重合于点,如下图所示:,,又平面,平面,即为三棱锥的高故答案为:【点睛】本题考查立体几何折叠问题中的三棱锥体积的求解问题,处理折叠问题的关键是能够明确折叠后的不变量,即不变的垂直关系和长度关系.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2);(3)存在,或.【解析】

(1)由条件可得,即,再由等比数列的定义即可得证;

(2)由等比数列的通项公式求得,,再由数列的单调性的判断,可得最小值,解不等式即可得到所求最小值;

(3)假设存在首项、第项、第项(),使得这三项依次构成等差数列,由等差数列的中项的性质和恒等式的性质,可得,的方程,解方程可得所求值.【详解】解:(1)证明:由,

得,即,

所以数列是首项为2,公比为2的等比数列;

(2)由(1)可得,,则

故,

设,

则,

所以单调递增,

则,于是,即,

故整数的最小值为;

(3)由上面得,,

设,

要使得成等差数列,即,

即,

得,

故为偶数,为奇数,

或.【点睛】本题考查等比数列的定义和通项公式的运用,考查不等式恒成立问题的解法,注意运用函数的单调性求得最值,考查存在性问题的解法,注意运用恒等式的性质,是一道难度较大的题目.18、(1);(2);(3).【解析】

(1)恰有一支一等品,从3支一等品中任取一支,从二、三等品种任取两支利用分布乘法原理计算后除以基本事件总数;(2)恰有两枝一等品,从3支一等品中任取两支,从二、三等品种任取一支利用分布乘法原理计算后除以基本事件总数;(3)从5支非三等品中任取三支除以基本事件总数.【详解】(1)恰有一枝一等品的概率;(2)恰有两枝一等品的概率;(3)没有三等品的概率.【点睛】本题考查古典概型及其概率计算公式,考查逻辑思维能力和运算能力,属于常考题.19、(Ⅰ)(Ⅱ)详见解析【解析】【试题分析】(1)借助递推关系式,运用等比数列的定义分析求解;(2)依据题设条件运用列项相消求和法进行求解:(Ⅰ),由(),得(),两式相减得.由,得,又,所以是以为首项,3为公比的等比数列,故.(Ⅱ),,.20、(1)m=0;(2)m=±2.【解析】试题分析:(1)直线平分圆,即直线过圆心,将圆心坐标代入直线方程可得m值(2)根据圆心到直线距离等于半径列方程,解得m值试题解析:解:(1)∵直线平分圆,所以圆心在直线y=x+m上,即有m=0.(2)∵直线与圆相切,所以圆心到直线的距离等于半径,∴d==2,m=±2.即m=±2时,直线l与圆相切.点睛:判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.上述方法中最常用的是几何法,点与圆的位置关系法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论