版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省绥化市海丰中学高一数学文摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若集合A={x|﹣2≤x<1},B={x|0<x≤2},则A∩B=()A.{x|﹣2≤x≤2} B.{x|﹣2≤x<0} C.{x|0<x<1} D.{x|1<x≤2}参考答案:C【考点】交集及其运算.【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={x|﹣2≤x<1},B={x|0<x≤2},∴A∩B={x|0<x<1}.故选:C.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.过点(1,﹣1)的圆x2+y2﹣2x﹣4y﹣20=0的最大弦长与最小弦长的和为()A.17 B.18 C.19 D.20参考答案:B【考点】J5:点与圆的位置关系.【分析】圆x2+y2﹣2x﹣4y﹣20=0的圆心C(1,2),半径r=5,设点A(1,﹣1),|AC|=3<r,从而点A在圆内,进而最大弦长为2r=10,最小弦长为:2.由此能求出结果.【解答】解:圆x2+y2﹣2x﹣4y﹣20=0的圆心C(1,2),半径r==5,设点A(1,﹣1),|AC|==3<r,∴点A在圆内,∴最大弦长为2r=10,最小弦长为:2=2=8.∴过点(1,﹣1)的圆x2+y2﹣2x﹣4y﹣20=0的最大弦长与最小弦长的和为:10+8=18.故选:B.3.若cos(﹣α)=,则sin2α=()A. B. C.﹣ D.﹣参考答案:D【考点】GF:三角函数的恒等变换及化简求值.【分析】法1°:利用诱导公式化sin2α=cos(﹣2α),再利用二倍角的余弦可得答案.法°:利用余弦二倍角公式将左边展开,可以得sinα+cosα的值,再平方,即得sin2α的值【解答】解:法1°:∵cos(﹣α)=,∴sin2α=cos(﹣2α)=cos2(﹣α)=2cos2(﹣α)﹣1=2×﹣1=﹣,法2°:∵cos(﹣α)=(sinα+cosα)=,∴(1+sin2α)=,∴sin2α=2×﹣1=﹣,故选:D.4.若函数的定义域是,则函数的定义域是
.
.
.
.参考答案:C5.一个正四棱锥的所有棱长均为2,其俯视图如图所示,则该正四棱锥的正视图的面积为()A. B. C.2 D.4参考答案:A【考点】简单空间图形的三视图.【分析】本题先要把原几何体画出来,再求出棱锥的高PO=,它就是正视图中的高,而正视图的底边就等于BC=2,由三角形的面积公式可得答案.【解答】解:由题意可知,原几何体如上图,其中,OE=1,PE=,在RT△POE中,PO=,故所得正视图为底边为2,高为的三角形,故其面积S=故选A6.(5分)设函数f(x)=,则f()的值为() A. B. ﹣ C. D. 18参考答案:A考点: 分段函数的解析式求法及其图象的作法;函数的值.专题: 计算题;分类法.分析: 当x>1时,f(x)=x2+x﹣2;当x≤1时,f(x)=1﹣x2,故本题先求的值.再根据所得值代入相应的解析式求值.解答: 解:当x>1时,f(x)=x2+x﹣2,则f(2)=22+2﹣2=4,∴,当x≤1时,f(x)=1﹣x2,∴f()=f()=1﹣=.故选A.点评: 本题考查分段复合函数求值,根据定义域选择合适的解析式,由内而外逐层求解.属于考查分段函数的定义的题型.7.(5分)把边长为的正方形ABCD沿对角线BD折起,形成的三棱锥A﹣BCD的正视图与俯视图(正视图与俯视图是全等的等腰直角三角形)如图所示,则其俯视图的面积为() A. B. 1 C. 2 D. 参考答案:A考点: 由三视图求面积、体积.专题: 计算题;空间位置关系与距离.分析: 结合直观图,根据正视图、俯视图均为全等的等腰直角三角形,可得平面BCD⊥平面ABD,分别求得△BDC和△ABD的高,即为侧视图直角三角形的两直角边长,代入面积公式计算.解答: 解:如图:∵正视图、俯视图均为全等的等腰直角三角形,∴平面BCD⊥平面ABD,又O为BD的中点,∴CO⊥平面ABD,OA⊥平面BCD,∴侧视图为直角三角形,且三角形的两直角边长为1,∴侧视图的面积S==.故选:A.点评: 本题考查了由正视图、俯视图求几何体的侧视图的面积,判断几何体的特征及相关几何量的数据是关键.8.已知全集,集合,则C=
(
)A.(-,0B.[2,+C.
D.[0,2]参考答案:C9.下列函数中,在(0,2)上为增函数的是()A.y=﹣3x+1 B.y=x2﹣2x+3 C.y= D.y=参考答案:C【考点】函数单调性的判断与证明.
【专题】函数的性质及应用.【分析】本题考查的是对不同的基本初等函数判断在同一区间上的单调性的问题.在解答时,可以结合选项逐一进行排查,排查时充分考虑所给函数的特性:一次函数性、幂函数性、二次函数性还有反比例函数性.问题即可获得解答.解:由题意可知:对A:y=﹣3x+1,为一次函数,易知在区间(0,2)上为减函数;对B:y=x2﹣2x+3,为二次函数,开口向上,对称轴为x=1,所以在区间(0,2)上为先减后增函数;对C:y=,为幂函数,易知在区间(0,2)上为增函数;对D:y=,为反比例函数,易知在(﹣∞,0)和(0,+∞)为单调减函数,所以函数在(0,2)上为减函数;综上可知:y=在区间(0,2)上为增函数;故选C.【点评】本题考查的是对不同的基本初等函数判断在同一区间上的单调性的问题.在解答的过程当中充分体现了对不同基本初等函数性质的理解、认识和应用能力.值得同学们体会反思.10.在以下四组函数中,表示相等函数的是(
)A、,
B、,C、
D、
参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.已知tan(π﹣x)=﹣2,则4sin2x﹣3sinxcosx﹣5cos2x=.参考答案:1【考点】运用诱导公式化简求值;三角函数的化简求值.【分析】由已知利用诱导公式可求tanx=2,进而利用同角三角函数基本关系式化简所求即可计算得解.【解答】解:∵tan(π﹣x)=﹣2,∴tanx=2,∴4sin2x﹣3sinxcosx﹣5cos2x====1.故答案为:1.12.函数,则f[f(﹣3)]的值为.参考答案:【考点】有理数指数幂的化简求值;函数的值.【专题】计算题.【分析】由题意先求出f(﹣3)的值,即可得到f[f(﹣3)]的值.【解答】解:∵函数,∴f(﹣3)=﹣2x﹣3=6﹣3=3,∴f[f(﹣3)]=f(3)=2﹣3=,故答案为.【点评】本题主要考查利用分段函数求函数的值的方法,体现了分类讨论的数学思想,分类讨论是解题的关键,属于基础题.13.已知扇形的面积是,扇形的圆心角的弧度数是2,则扇形的弧长是
.参考答案:414.已知集合A={1,2,3,x},B={3,x2},且A∪B={1,2,3,x},则x的值为____.参考答案:
-1,0,±
15.函数的值域是__________.
参考答案:(0,2】略16.已知为坐标原点,点,且.若,则与的夹角为
.参考答案:
17.已知函数f(x)=ax2+bx+c(a≠0),设函数y=[f(x)]2+p?f(x)+q的零点所组成的集合为A,则以下集合不可能是A集合的序号为.①②③{﹣2,3,8}④{﹣4,﹣1,0,2}⑤{1,3,5,7}.参考答案:②④【考点】二次函数的性质;集合的表示法.【分析】根据函数f(x)的对称性,可得到方程m[f(x)]2+nf(x)+p=0的根,应关于对称轴x=﹣对称,分别进行判断,即得答案.【解答】解:f(x)=ax2+bx+c的对称轴为直线x=﹣,设函数y=[f(x)]2+p?f(x)+q的零点为y1,y2,则必有y1=ax2+bx+c,y2=ax2+bx+c,方程y1=ax2+bx+c的两个解x1,x2要关于直线x=﹣对称,也就是说2(x1+x2)=﹣,同理方程y2=ax2+bx+c的两个解x3,x4也要关于直线x=﹣对称那就得到2(x3+x4)=﹣,①可以找到对称轴直线x=②不能找到对称轴直线,③{﹣2,3,8}可以找到对称轴直线x=3,④{﹣4,﹣1,0,2}不能找到对称轴直线,⑤{1,3,5,7}可以找到对称轴直线x=4,故答案为:②④.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)已知函数的图象在上连续不断,定义:,。其中,表示函数在D上的最小值,表示函数在D上的最大值。若存在最小正整数,使得对任意的成立,则称函数为上的“阶收缩函数”。(1)若,试写出的表达式;(2)已知函数,试判断是否为上的“阶收缩函数”,
如果是,求出对应的;如果不是,请说明理由;(3)已知函数在上单调递增,在上单调递减,若
是上的“阶收缩函数”,求的取值范围。参考答案:(1)由题意得:
(2),
当时,
当时,
当时,
综上所述:,又,则(3)ⅰ)时,在上单调递增,因此,,
。因为是上的“阶收缩函数”,所以,
①对恒成立;
②存在,使得成立。
①即:对恒成立,由,解得:
,要使对恒成立,需且只需
②即:存在,使得成立。由得:
,所以,需且只需
综合①②可得:
ⅱ)时,在上单调递增,在上单调递减,
因此,
显然当时,不成立。
ⅲ)当时,在上单调递增,在上单调递减
因此,
显然当时,不成立。
综合ⅰ)ⅱ)ⅲ)可得:19.如图,圆内接四边形ABCD中,AD=DC=2BC=2,AB=3.(1)求角A和BD;(2)求四边形ABCD的面积.参考答案:【考点】NC:与圆有关的比例线段.【分析】(1)分别在△ABD与△BCD中,由余弦定理可得:BD2=22+32﹣2×2×3×cos∠BAD,BD2=22+12﹣2×2×1×cos∠BCD,又cos∠BAD=cos(π﹣∠BCD)=﹣cos∠BCD.即可得出.(2)四边形ABCD的面积S=S△ABD+S△BCD.【解答】解:(1)分别在△ABD与△BCD中,由余弦定理可得:BD2=22+32﹣2×2×3×cos∠BAD,BD2=22+12﹣2×2×1×cos∠BCD,又cos∠BAD=cos(π﹣∠BCD)=﹣cos∠BCD.∴cos∠BAD=.∴∠BAD=.BD2=13﹣12×=7,解得BD=.(2)四边形ABCD的面积S=S△ABD+S△BCD=+=2.20.已知函数(1)若,求函数的零点;(2)若在(1,+∞)恒成立,求a的取值范围;(3)设函数,解不等式.参考答案:(1)1;(2)(3)见解析【分析】(1)解方程可得零点;(2)恒成立,可分离参数得,这样只要求得在上的最大值即可;(3)注意到的定义域,不等式等价于,这样可根据与0,1的大小关系分类讨论.【详解】(1)当时,令得,,∵,∴函数的零点是1(2)在恒成立,即在恒成立,分离参数得:,∵,∴
从而有:.(3)令,得,,因为函数的定义域为,所以等价于(1)当,即时,恒成立,原不等式的解集是(2)当,即时,原不等式的解集是(3)当,即时,原不等式的解集是(4)当,即时,原不等式的解集是综上所述:当时,原不等式的解集是当时,原不等式的解集是
当时,原不等式的解集是
当时,原不等式的解集是【点睛】本题考查函数的零点,考查不等式恒成立问题,考查解含参数的一元二次不等式.其中不等式恒成立问题可采用参数法转化为求函数的最值问题,而解一元二次不等式,必须对参数分类讨论,解题关键是确定分类标准.解一元二次不等式的分类标准有三个方面:一是二次的系数正负或者为0问题,二是一元二次方程的判别式的正负或0的问题,三是一元二次方程两根的大小关系.21.已知向量=(﹣2,1),=(3,﹣4).(1)求(+)?(2﹣)的值;(2)求向量与+的夹角.参考答案:【考点】平面向量数量积的运算;数量积表示两个向量的夹角.【分析】(1)利用向量的坐标求解所求向量的坐标,利用数量积运算法则求解即可.(2)利用数量积求解向量的夹角即可.【解答】解:(1)向量=(﹣2,1),=(3,﹣4).(+)=(1,﹣3),(2﹣)=(﹣7,6).所以(+)?(2﹣)=﹣7﹣18=﹣25.(2)+=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国开00747+22003基础会计期末复习资料
- 第四单元 乘与除(复习课件)北师大版三年级数学上册课件+练习 (素养达标课件+教案+练习)三年级数学上册同步备课 (北师大版)
- 四川省内江市威远中学2024-2025学年高一上学期12月月考地理试题(含答案)
- 辽宁省鞍山市海城市西部集团2024-2025学年八年级上学期12月第三次质量监测英语试题(含答案无听力原文及音频)
- 河北省唐山市路南区2024-2025学年八年级上学期12月月考数学试题(无答案)
- 广东省梅州市梅雁中学2024-2025学年高三上学期12月月考地理试题(含答案)
- 2024-2025学年高一【数学(人教A版)】指数函数的图象和性质-教学设计
- 自动控制原理及应用知到智慧树章节测试课后答案2024年秋新疆工程学院
- 建筑力学知到智慧树章节测试课后答案2024年秋江西理工大学
- 高考英语3000词词性转换清单
- 医疗质量检查反馈表
- 燃气经营安全重大隐患判定标准课件
- 互联网+大学生创新创业大赛“智慧老人”健康系统计划书
- 伟大的《红楼梦》智慧树知到期末考试答案章节答案2024年北京大学
- 临床路径存在问题及整改措施
- 网络拓扑图VISIO素材大全课件
- MOOC 信号与系统-北京邮电大学 中国大学慕课答案
- 第7课《实践出真知》第1框《人的认识从何而来》同步课堂课件-【中职专用】《哲学与人生》
- 保险实务模拟实训报告总结
- 2024年演出经纪人考试必背1000题附答案(黄金题型)
- 师德师风活动开展方案及流程
评论
0/150
提交评论