




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,是的直径,,是上的两点,且平分,分别与,相交于点,,则下列结论不一定成立的是()A. B. C. D.2.抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣23.若反比例函数的图象过点A(5,3),则下面各点也在该反比例函数图象上的是()A.(5,-3) B.(-5,3) C.(2,6) D.(3,5)4.下列说法正确的是()A.所有菱形都相似 B.所有矩形都相似C.所有正方形都相似 D.所有平行四边形都相似5.将抛物线向右平移1个单位,再向上平移3个单位,得到的抛物线是()A. B.C. D.6.下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼7.已知下列命题:①若,则;②当时,若,则;③直角三角形中斜边上的中线等于斜边的一半;④矩形的两条对角线相等.其中原命题与逆命题均为真命题的个数是()A.个 B.个 C.个 D.个8.如图,在菱形ABCD中,AB=4,按以下步骤作图:①分别以点C和点D为圆心,大于CD的长为半径画弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD交于点E,连接BE,则BE的值为()A. B.2 C.3 D.49.如图平行四边变形ABCD中,E是BC上一点,BE∶EC=2∶3,AE交BD于F,则S△BFE∶S△FDA等于()A.2∶5 B.4∶9 C.4∶25 D.2∶310.下列四对图形中,是相似图形的是()A.任意两个三角形 B.任意两个等腰三角形C.任意两个直角三角形 D.任意两个等边三角形11.如图,△ABC中,∠A=65°,AB=6,AC=3,将△ABC沿图中的虚线剪开,剪下的阴影三角形与原三角形不构成相似的是()A. B.C. D.12.如图所示,∠APB=30°,O为PA上一点,且PO=6,以点O为圆心,半径为3的圆与PB的位置关系是()A.相离 B.相切C.相交 D.相切、相离或相交二、填空题(每题4分,共24分)13.圆弧形蔬菜大棚的剖面如图,已知AB=16m,半径OA=10m,OC⊥AB,则中柱CD的高度为_________m.14.已知等边△ABC的边长为4,点P是边BC上的动点,将△ABP绕点A逆时针旋转60°得到△ACQ,点D是AC边的中点,连接DQ,则DQ的最小值是_____.15.时钟上的分针匀速旋转一周需要60分钟,则经过10分钟,分针旋转了_____度.16.函数沿直线翻折所得函数解析式为_____________.17.如图,是⊙的一条弦,⊥于点,交⊙于点,连接.如果,,那么⊙的半径为_________.18.二次函数的图像开口方向向上,则______0.(用“=、>、<”填空)三、解答题(共78分)19.(8分)在平行四边形ABCD中,点E是AD边上的点,连接BE.(1)如图1,若BE平分∠ABC,BC=8,ED=3,求平行四边形ABCD的周长;(2)如图2,点F是平行四边形外一点,FB=CD.连接BF、CF,CF与BE相交于点G,若∠FBE+∠ABC=180°,点G是CF的中点,求证:2BG+ED=BC.20.(8分)解方程:2(x-3)2=x2-921.(8分)化简求值:,其中a=2cos30°+tan45°.22.(10分)已知:如图,C,D是以AB为直径的⊙O上的两点,且OD∥BC.求证:AD=DC.23.(10分)已知:在△ABC中,点D、点E分别在边AB、AC上,且DE//BC,BE平分∠ABC.(1)求证:BD=DE;(2)若AB=10,AD=4,求BC的长.24.(10分)在下列网格图中,每个小正方形的边长均为个单位中,,且三点均在格点上.(1)画出绕顺时针方向旋转后的图形;(2)求点运动路径的长(结果保留).25.(12分)如图1,△ABC中,AB=AC=4,∠BAC=,D是BC的中点.小明对图1进行了如下探究:在线段AD上任取一点E,连接EB.将线段EB绕点E逆时针旋转80°,点B的对应点是点F,连接BF,小明发现:随着点E在线段AD上位置的变化,点F的位置也在变化,点F可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由.(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF的最小值.26.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动、两个转盘,停止后,指针各指向一个数字.小聪和小明利用这两个转盘做游戏:若两数之和为负数,则小聪胜;否则,小明胜.你认为这个游戏公平吗?如果不公平,对谁更有利?请你利用树状图或列表法说明理由.
参考答案一、选择题(每题4分,共48分)1、C【分析】由圆周角定理和角平分线得出,,由等腰三角形的性质得出,得出,证出,选项A成立;由平行线的性质得出,选项B成立;由垂径定理得出,选项D成立;和中,没有相等的边,与不全等,选项C不成立,即可得出答案.【详解】∵是的直径,平分,∴,,∴,∵,∴,∴,∴,选项A成立;∴,选项B成立;∴,选项D成立;∵和中,没有相等的边,∴与不全等,选项C不成立,故选C.【点睛】本题考查了圆周角定理,垂径定理,等腰三角形的性质,平行线的性质,角平分线的性质,解本题的关键是熟练掌圆周角定理和垂径定理.2、A【解析】试题分析:由题意知抛物线y=x2+2x+m﹣1与x轴有两个交点,所以△=b2﹣4ac>0,即4﹣4m+4>0,解得m<2,故答案选A.考点:抛物线与x轴的交点.3、D【解析】先利用待定系数法求出反比例函数的解析式,然后将各选项的点代入验证即可.【详解】将点代入得:,解得则反比例函数为:A、令,代入得,此项不符题意B、令,代入得,此项不符题意C、令,代入得,此项不符题意D、令,代入得,此项符合题意故选:D.【点睛】本题考查了待定系数法求函数解析式、以及确定某点是否在函数上,依据题意求出反比例函数解析式是解题关键.4、C【分析】根据相似多边形的定义一一判断即可.【详解】A.菱形的对应边成比例,对应角不一定相等,故选项A错误;B.矩形的对应边不一定成比例,对应角一定相等,故选项B错误;C.正方形对应边一定成比例,对应角一定相等,故选项C正确;D.平行四边形对应边不一定成比例,对应角不一定相等,故选项D错误.故选:C.【点睛】本题考查了相似多边形的判定,解答本题的关键是灵活运用所学知识解决问题,属于中考常考题型.5、D【分析】由题意可知原抛物线的顶点及平移后抛物线的顶点,根据平移不改变抛物线的二次项系数可得新的抛物线解析式.【详解】解:由题意得原抛物线的顶点为(0,0),∴平移后抛物线的顶点为(1,3),∴得到的抛物线解析式为y=2(x-1)2+3,故选:D.【点睛】本题考查二次函数的几何变换,熟练掌握二次函数的平移不改变二次项的系数得出新抛物线的顶点是解决本题的关键.6、B【解析】试题解析:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选B.考点:随机事件.7、B【分析】先写出每个命题的逆命题,再分别根据绝对值的意义、不等式的性质、直角三角形的性质和判定、矩形的性质和判定依次对各命题进行判断即可.【详解】解:①的原命题:若,则,是假命题;①的逆命题:若,则,是真题,故①不符合题意;②的原命题:当时,若,则,根据不等式的基本性质知该命题是真命题;②的逆命题:当时,若,则,也是真命题,故②符合题意;③的原命题:直角三角形中斜边上的中线等于斜边的一半,是真命题;③的逆命题:一边上的中线等于这边的一半的三角形是直角三角形,也是真命题,故③符合题意;④的原命题:矩形的两条对角线相等,是真命题;④的逆命题:对角线相等的四边形是矩形,是假命题,故④不符合题意.综上,原命题与逆命题均为真命题的是②③,共个,故选B.【点睛】本题考查了命题和定理、实数的绝对值、不等式的性质、直角三角形的性质和判定、矩形的性质和判定等知识,属于基本题目,熟练掌握以上基本知识是解题的关键.8、B【解析】由作法得AE垂直平分CD,则∠AED=90°,CE=DE,于是可判断∠DAE=30°,∠D=60°,作EH⊥BC于H,从而得到∠ECH=60°,利用三角函数可求出EH、CH的值,再利用勾股定理即可求出BE的长.【详解】解:如图所示,作EH⊥BC于H,由作法得AE垂直平分CD,∴∠AED=90°,CE=DE=2,∵四边形ABCD为菱形,∴AD=2DE,∴∠DAE=30°,∴∠D=60°,∵AD//BC,∴∠ECH=∠D=60°,在Rt△ECH中,EH=CE·sin60°=,CH=CE·cos60°=,∴BH=4+1=5,在Rt△BEH中,由勾股定理得,.故选B.【点睛】本题考查了垂直平分线的性质、菱形的性质、解直角三角形等知识.合理构造辅助线是解题的关键.9、C【分析】由四边形ABCD是平行四边形,可得AD∥BE,由平行得相似,即△BEF∽△DAF,再利用相似比解答本题.【详解】∵,
∴,∵四边形是平行四边形,
∴,∥,
∴,,
∴,,故选:C.【点睛】本题考查了相似三角形的判定与性质.正确运用相似三角形的相似比是解题的关键.10、D【分析】根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,对题中条件一一分析,排除错误答案.【详解】解:A、任意两个三角形,形状不确定,不一定是相似图形,故A错误;B、任意两个等腰三角形,形状不确定,不一定是相似图形,故B错误;C、任意两个直角三角形,直角边的长度不确定,不一定是相似图形,故C错误;D、任意两个等边三角形,形状相同,但大小不一定相同,符合相似形的定义,故D正确;故选:D.【点睛】本题考查的是相似形的识别,关键要联系实际,根据相似图形的定义得出.11、C【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项不符合题意;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项不符合题意;C、两三角形的对应角不一定相等,故两三角形不相似,故本选项符合题意;D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项不符合题意.故选:C.【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.12、C【分析】过O作OC⊥PB于C,根据直角三角形的性质得到OC=3,根据直线与圆的位置关系即可得到结论.【详解】解:过O作OC⊥PB于C,∵∠APB=30°,OP=6,∴OC=OP=3<3,∴半径为3的圆与PB的位置关系是相交,故选:C.【点睛】本题考查直线与圆的位置关系,掌握含30°角的直角三角形的性质是本题的解题关键.二、填空题(每题4分,共24分)13、4【分析】根据垂径定理可得AD=AB,然后由勾股定理可得OD的长,继而可得CD的高求解.【详解】解:∵CD垂直平分AB,∴AD=1.∴OD==6m,∴CD=OC−OD=10−6=4(m).故答案是:4【点睛】本题考查垂径定理和勾股定理的实际应用,掌握这些知识点是解题关键.14、【分析】根据旋转的性质,即可得到∠BCQ=120°,当DQ⊥CQ时,DQ的长最小,再根据勾股定理,即可得到DQ的最小值.【详解】解:如图,由旋转可得∠ACQ=∠B=60°,又∵∠ACB=60°,∴∠BCQ=120°,∵点D是AC边的中点,∴CD=2,当DQ⊥CQ时,DQ的长最小,此时,∠CDQ=30°,∴CQ=CD=1,∴DQ=,∴DQ的最小值是,故答案为.【点睛】本题主要考查线段最小值问题,关键是利用旋转、等边三角形的性质及勾股定理求解.15、【分析】时钟上的分针匀速旋转一周需要60min,分针旋转了360°;求经过10分,分针的旋转度数,列出算式,计算即可.【详解】根据题意得,×360°=60°.故答案为60°.【点睛】本题考查了生活中的旋转现象,明确分针旋转一周,分针旋转了360°是解答本题的关键.16、【解析】函数沿直线翻折所得函数图像开口向下,只要根据轴对称的性质求出对称后的顶点坐标即可.【详解】∵=(x-1)2+3,∴其顶点坐标是(1,3),∵(1,3)关于直线的点的坐标是(1,-1),∴所得函数解析式为(x-1)2-1.故答案为:.【点睛】本题考查了二次函数的轴对称变换,其形状不变,但开口方向相反,因此a值为原来的相反数,顶点位置改变,只要根据轴对称的点坐标特征求出新的顶点坐标,即可确定解析式.17、5【分析】由垂径定理可知,在中利用勾股定理即可求出半径.【详解】设⊙的半径为r∵是⊙的一条弦,⊥,∴在中∵∴∴故答案为5【点睛】本题主要考查勾股定理及垂径定理,掌握勾股定理及垂径定理的内容是解题的关键.18、>【分析】根据题意直接利用二次函数的图象与a的关系即可得出答案.【详解】解:因为二次函数的图像开口方向向上,所以有>1.故填>.【点睛】本题主要考查二次函数的性质,掌握二次项系数a与抛物线的关系是解题的关键,图像开口方向向上,>1;图像开口方向向下,<1.三、解答题(共78分)19、(1)26;(2)见解析【分析】(1)由平行四边形的性质得出AD=BC=8,AB=CD,AD∥BC,由平行线的性质得出∠AEB=∠CBE,由BE平分∠ABC,得出∠ABE=∠CBE,推出∠ABE=∠AEB,则AB=AE,AE=AD﹣ED=BC﹣ED=5,得出AB=5,即可得出结果;(2)连接CE,过点C作CK∥BF交BE于K,则∠FBG=∠CKG,由点G是CF的中点,得出FG=CG,由AAS证得△FBG≌△CKG,得出BG=KG,CK=BF=CD,由平行四边形的性质得出∠ABC=∠D,∠BAE+∠D=180°,AB=CD=CK,AD∥BC,由平行线的性质得出∠DEC=∠BCE,∠AEB=∠KBC,易证∠EKC=∠D,∠CKB=∠BAE,由AAS证得△AEB≌△KBC,得出BC=BE,则∠KEC=∠BCE,推出∠KEC=∠DEC,由AAS证得△KEC≌△DEC,得出KE=ED,即可得出结论.【详解】(1)∵四边形ABCD是平行四边形,∴AD=BC=8,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,∵AE=AD﹣ED=BC﹣ED=8﹣3=5,∴AB=5,∴平行四边形ABCD的周长=2AB+2BC=2×5+2×8=26;(2)连接CE,过点C作CK∥BF交BE于K,如图2所示:则∠FBG=∠CKG,∵点G是CF的中点,∴FG=CG,在△FBG和△CKG中,∵,∴△FBG≌△CKG(AAS),∴BG=KG,CK=BF=CD,∵四边形ABCD是平行四边形,∴∠ABC=∠D,∠BAE+∠D=180°,AB=CD=CK,AD∥BC,∴∠DEC=∠BCE,∠AEB=∠KBC,∵∠FBE+∠ABC=180°,∴∠FBE+∠D=180°,∴∠CKB+∠D=180°,∴∠EKC=∠D,∵∠BAE+∠D=180°,∴∠CKB=∠BAE,在△AEB和△KBC中,∵,∴△AEB≌△KBC(AAS),∴BC=EB,∴∠KEC=∠BCE,∴∠KEC=∠DEC,在△KEC和△DEC中,∵,∴△KEC≌△DEC(AAS),∴KE=ED,∵BE=BG+KG+KE=2BG+ED,∴2BG+ED=BC.【点睛】本题主要考查三角形全等的判定和性质定理和平行四边形的性质定理的综合应用,添加合适的辅助线,构造全等三角形,是解题的关键.20、x1=3,x2=1【分析】根据平方差公式将等号右边因式分解,再移项并提取公因式,利用因式分解法即可求解.【详解】解:2(x-3)2=x2-12(x-3)2-(x+3)(x-3)=0(x-3)(2x-6-x-3)=0x1=3,x2=1.【点睛】本题考查解一元二次方程,根据方程特点选择合适的求解方法是解题的关键.21、,【分析】本题考查了分式的化简求值,先把括号内通分化简,再把除法转化为乘法,约分化简,最后根据特殊角的三角函数值求出a的值,代入计算.【详解】解:原式=÷==,当a=2cos30°+tan45°=2×+1=+1时,原式=.22、见解析证明.【解析】试题分析:连结OC,根据平行线的性质得到∠1=∠B,∠2=∠3,而∠B=∠3,所以∠1=∠2,则根据圆心角、弧、弦的关系即可得到结论.试题解析:连结OC,如图,∵OD∥BC,∴∠1=∠B,∠2=∠3,又∵OB=OC,∴∠B=∠3,∴∠1=∠2,∴AD=DC.考点:圆心角、弧、弦的关系.23、(1)见解析;(2)15【分析】(1)利用平行线性质及角平分线线定理得到∠DEB=∠DBE,再利用等腰三角形判定得到BD=DE,即得到答案.(2)利用相似的判定得到△ADE∽△ABC,再利用相似的性质得到,代入值即可得到答案.【详解】(1)证明:∵DE//BC,∴∠DEB=∠EBC∵BE平分∠ABC∴∠DBE=∠EBC∴∠DEB=∠DBE∴BD=DE(2)解:∵AB=10,AD=4∴BD=DE=6∵DE//BC∴△ADE∽△ABC∴∴∴BC=15【点睛】本题考查平行线性质、等腰三角形的判定以及相似三角形的判定、性质,解题的关键是熟练掌握基本知识,属于中考常考题型.24、(1)见解析;(2)【解析】(1)利用网格特点和旋转的性质画图;(2)点C的运动路径是弧形,找到半径,圆心角即可求解.【详解】解:如图所示,即为所求;,∴点C的运动路径是以A为圆心,AC长为半径的弧,点的运动路径的长为:【点睛】本题考查了网格中图形的旋转及旋转轨迹,还考查了弧长公式的运算.25、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水上运动设施建设投资合同
- 建设工程施工承包垫资合同
- 信息咨询服务合同书
- 电子商务法电子合同法
- 四川外国语大学《化工设备设计》2023-2024学年第二学期期末试卷
- 广东东软学院《射频集成电路分析与设计》2023-2024学年第二学期期末试卷
- 邢台学院《钢琴5》2023-2024学年第二学期期末试卷
- 新疆建设职业技术学院《水利水电工程概论》2023-2024学年第二学期期末试卷
- 青海师范大学《数字高程模型》2023-2024学年第二学期期末试卷
- 江西航空职业技术学院《美术三》2023-2024学年第二学期期末试卷
- 英语常用动词表500个
- 《税法》(第六版)全书教案电子讲义
- 2024年电工(高级技师)职业鉴定理论考试题库-下(多选、判断题)
- 20S515 钢筋混凝土及砖砌排水检查井
- 《幼儿园保教质量评估指南》解读
- ICU单间耗材出入库使用登记表
- 外研版(一年级起点)四年级下册英语全册教学课件
- 助贷机构业务流程规范
- 2024四川省凉山州林业局招聘60人历年(高频重点复习提升训练)共500题附带答案详解
- DL∕T 5106-2017 跨越电力线路架线施工规程
- 西师大版数学四年级下册全册教学课件(2024年3月修订)
评论
0/150
提交评论