




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
MathematicalStructures〔数学结构〕22024/5/21CollegeofComputerScience&Technology,BUPTMathematicalstructureAcollectionofobjectswithoperationsdefinedonthemandtheaccompanyingpropertiesformamathematicalstructureorsystem.Inthisbookwedealonlywithdiscretemathematicalstructures.32024/5/21CollegeofComputerScience&Technology,BUPTExample1Thecollectionofsetswiththeoperationsofunion,intersection,andcomplementandtheiraccompanyingpropertiesisa(discrete)mathematicalstructure.Wedenotethisstructureby[sets,
,
,].42024/5/21CollegeofComputerScience&Technology,BUPTExample2Thecollectionof33matriceswiththeoperationsofaddition,multiplication,andtranspose〔转置〕isamathematicalstructuredenotedby[33matrices,+,,T].52024/5/21CollegeofComputerScience&Technology,BUPTClosure〔封闭性〕Astructureisclosedwithrespecttoanoperationifthatoperationalwaysproducesanothermemberofthecollectionofobjects.62024/5/21CollegeofComputerScience&Technology,BUPTExamplesThestructure[5
5matrices,+,*,T]isclosedwithrespecttoadditionbecausethesumoftwo5
5matricesisanother5
5matrix.Thestructure[oddintegers,+,*]isnotclosedwithrespecttoaddition.Thesumoftwooddintegersisaneveninteger.Thisstructuredoeshavetheclosurepropertyformultiplication,sincetheproductoftwooddnumbersisanoddnumber.72024/5/21CollegeofComputerScience&Technology,BUPTBinaryoperation〔二元运算〕Anoperationthatcombinestwoobjectsisabinaryoperation.Anoperationthatrequiresonlyoneobjectisaunaryoperation〔一元运算〕.Binaryoperationsoftenhavesimilarproperties,aswehaveseenearlier.Example(a)Setintersectionisabinaryoperationsinceitcombinestwosetstoproduceanewset.Producingthetransposeofmatrixisaunaryoperation.82024/5/21CollegeofComputerScience&Technology,BUPTCommutative〔交换性〕Commonpropertieshavebeengivennames.Forexample,iftheorderoftheobjectsdoesnotaffecttheoutcomeofabinaryoperation,wesaythattheoperationiscommutative.Thatis,ifx
y=y
x,whereissomebinaryoperation,iscommutative.Example(a)JoinandmeetforBooleanmatricesarecommutativeoperations.A
B=B
AandA
B=B
A.(b)OrdinarymatrixmultiplicationisnotacommutativeoperationAB
BA.92024/5/21CollegeofComputerScience&Technology,BUPTNoteanoperationhasapropertymeansthestatementofthepropertyistruewhentheoperationisusedwithanyobjectsinthestructure.Ifthereisevenonecasewhenthestatementisnottrue,theoperationdoesnothavethatproperty.102024/5/21CollegeofComputerScience&Technology,BUPTAssociative〔结合性〕Ifnisabinaryoperation,thennisassociativeorhastheassociativepropertyif(x
y)
z=x
(y
z).ExampleSetunionisanassociativeoperation,since(A
B)
C=A
(B
C)isalwaystrue.112024/5/21CollegeofComputerScience&Technology,BUPTDistributive〔分配〕propertyIfamathematicalstructurehastwobinaryoperations,say
and
,adistributivepropertyhasthefollowingpattern:
x
(y
z)=(x
y)
(x
z).Example(a)Wearefamiliarwiththedistributivepropertyforrealnumbers;ifa,b,andcarerealnumbers,thena
(b+c)=a
b+a
c.(b)Thestructure[sets,
,
,]hastwodistributiveproperties:A
(B
C)=(A
B)
(A
C)andA
(B
C)=(A
B)
(A
C).122024/5/21CollegeofComputerScience&Technology,BUPTDeMorgan‘slaws〔德.摩根律〕Severalofthestructureswehaveseenhaveaunaryoperationandtwobinaryoperations.Iftheunaryoperationis*andthebinaryoperationsare
and
.thenDeMorgan'slawsare(x
y)*=x*
y*and(x
y)*=x*
y*.Example9(a)(A
B)=A
Band(A
B)=A
B.(b)Thestructure[realnumbers,+,*,]doesnotsatisfyDeMorgan'slaws.since
132024/5/21CollegeofComputerScience&Technology,BUPTIdentity(单位元〕foranoperationAstructurewithabinaryoperation
maycontainadistinguishedobjecte,withthepropertyx
e=e
x=xforallxinthecollection.Wecalleanidentityfor
.Infact,anidentityforanoperationmustbeunique.142024/5/21CollegeofComputerScience&Technology,BUPTTheorem1Ifeisanidentityforabinaryoperation
,theneisunique.ProofAssumeanotherobjectialsohastheidentityproperty,sox
i=i
x=x.Thene
i=e,butsinceeisanidentityforn,i
e=e
i=i.Thus,i=e.Thereisatmostoneobjectwiththeidentitypropertyfor
.152024/5/21CollegeofComputerScience&Technology,BUPTExample10For[n
nmatrices,+,*,T],Inistheidentityformatrixmultiplicationandthen
nzeromatrixistheidentityformatrixaddition.162024/5/21CollegeofComputerScience&Technology,BUPTInverse〔逆元〕
Ifabinaryoperation
hasanidentitye,wesayyisa
-inverseofxifx
y=y
x=e.Theorem2If
isanassociativeoperationandxhasa
-inversey,thenyisunique.ProofAssumethereisanother
-inverseforx,sayz.Then
(z
x)
y=e
y=yandz
(x
y)=z
e=z.Since
isassociative,(z
x)
y=z
(x
y)andsoy=z.172024/5/21CollegeofComputerScience&Technology,BUPTExample11(a)Inthestructure[3
3matrices,+,*,T]eachmatrixA=[aij]hasa+-inverse,oradditiveinverse,-A=[-aij].(b)Inthestructure[integers,+,*],onlytheintegersland-lhavemultiplicativeinverses.182024/5/21CollegeofComputerScience&Technology,BUPTExample12Let
,and*bedefinedfortheset{0,l}bythefollowingtables.Thus1
0=l,0
1=0,and1*=0.Determineifeachofthefollowingistruefor[{0,l},
,
,*].(a)
iscommutative.(b)
isassociative.(c)DeMorgan'slawshold.(d)Twodistributivepropertiesholdforthestructure.192024/5/21CollegeofComputerScience&Technology,BUPTExample12
Solution(a)Thestatementx
y=y
xmustbetrueforallchoicesofxandy.Sinceboth0
landl
0arel,
iscommutative.(b)Theeightpossiblecasestobecheckedareleftasanexercise.(c)(0
0)*=0*=l0*
0*=1
1=l.(0
1)*=1*=00*
1*=1
0=0. (1
1)*=0*=l1*
1*=0
0=0. ThelastpairshowsthatDeMorgan'slawsdonotholdinthisstructure.202024/5/21CollegeofComputerScience&Technology,BUPT(d)Onepossibledistributivepropertyisx
(y
z)=(x
y)
(x
z).allpossiblecasesmustbechecked.Wecanshowitinatable.
212024/5/21CollegeofComputerScience&Technology,BUPTBinaryoperations
(二元运算)AbinaryoperationonasetAisaneverywheredefinedfunctionf:A
A
A.Abinaryoperationmustsatisfy:fassignsanelementf(a,b)ofAtoeachorderedpair(a,b)inA
A.OnlyoneelementofAisassignedtoeachorderedpair.222024/5/21CollegeofComputerScience&Technology,BUPTNoteIt’scustomarytodenotebinaryoperationsbyasymbolsuchas
,insteadoff,andtodenotetheelementassignedto(a,b)bya
b[insteadof(a,b)].Aisclosed(封闭的)
undertheoperation
,ifaandbareelementsinA,a
b
A.232024/5/21CollegeofComputerScience&Technology,BUPTExample1,2
LetA=Z.Definea
basa+b.
isabinaryoperationonZ.LetA=R.Definea
basa/b.
isnotabinaryoperation.Forexample,3
0isnotdefined.242024/5/21CollegeofComputerScience&Technology,BUPTExample3LetA=Z+.Definea
basa-b.
isnotabinaryoperation.itdoesnotassignanelementofAtoeveryorderedpairofelementsofA;forexample,2
5
A.252024/5/21CollegeofComputerScience&Technology,BUPTExample4LetA=Z.Definea
basanumberlessthanbothaandb.
isnotabinaryoperation,sinceitdoesnotassignauniqueelementofAtoeachorderedpairofelementsofA;forexample,8
6couldbe5,4,3,l,andsoon.inthiscase,
wouldbearelationfromA
AtoA,butnotafunction262024/5/21CollegeofComputerScience&Technology,BUPTExample5,6LetA=Z.Definea
basmax{a,b}.
isabinaryoperation;forexample,2
4=4,-3
(-5)=-3.LetA=P(S),forsomesetS.IfVandWaresubsetsofS,defineV
WasV
W.
isabinaryoperationonA.ifwedefineV
'WasV
W,then
'isanotherbinaryoperationonA.Note:It’spossibletodefinemanybinaryoperationsonthesameset.272024/5/21CollegeofComputerScience&Technology,BUPTExample7,8LetMbethesetofalln
nBooleanmatricesforafixedn.DefineA
BasA
B
isabinaryoperation.ThisisalsotrueofA
B.LetLbealattice.Definea
basa
b.
isabinaryoperationonL.Thisisalsotrueofa
b282024/5/21CollegeofComputerScience&Technology,BUPTTables–运算表IfA={al,a2,...,an}isafiniteset,wecandefineabinaryoperationonAbymeansofatable292024/5/21CollegeofComputerScience&Technology,BUPTExample9LetA={0,l}.Definebinaryoperations
and
bythefollowingtables:302024/5/21CollegeofComputerScience&Technology,BUPTHowmanyoperations?IfA={a,b},howmanybinaryoperationscanbedefinedonA.Everybinaryoperation
onAcanbedescribedbyatableThereare2
2
2
2=24or16waystocompletethetable.312024/5/21CollegeofComputerScience&Technology,BUPTPropertiesofBinaryOperations〔二元运算的性质〕Forallelementsa,b,andcinACommutative(可交换的)a*b=b*a
Associative(可结合的)a*(b*c)=(a*b)*cIdempotent(幂等的)a*a=a322024/5/21CollegeofComputerScience&Technology,BUPTCommutative–可交换的AbinaryoperationonasetAissaidtobecommutativeifa*b=b*aforallelementsaandbinA.Example:ThebinaryoperationofadditiononZ
ThebinaryoperationofsubtractiononZ.332024/5/21CollegeofComputerScience&Technology,BUPTCommutativeAbinaryoperationthatisdescribedbyatableiscommutativeifandon1yifTheentriesinthetablearesymmetricwithrespecttothemaindiagonal.342024/5/21CollegeofComputerScience&Technology,BUPTExample12Whichofthefol1owingbinaryoperationsonA={a,b,c,d}arecommutative?352024/5/21CollegeofComputerScience&Technology,BUPTAssociative–可结合的Abinaryoperation*onasetAissaidtobeassociativeifa*(b*c)=(a*b)*cforallelementsa,b,andcinA.Example:ThebinaryoperationofadditiononZ
ThebinaryoperationofsubtractiononZ
2-(3-5)
(2-3)-5.362024/5/21CollegeofComputerScience&Technology,BUPTExample15LetLbealattice.Thebinaryoperationdefinedbya*b=a
biscommutativeandassociative.Italsosatisfiestheidempotentpropertya
a=a.372024/5/21CollegeofComputerScience&Technology,BUPTExample16Let*beabinaryoperationonasetA,andsupposethat*satisfiesthefollowingpropertiesforanya,b,andcinA:
a=a*a
a*b=b*a
a*(b*c)=(a*b)*cDefinearelation
onAbya
bifandonlyifa=a*b.Showthat(A,
)isaposet,andforalla,binA,GLB(a,b)=a*b.382024/5/21CollegeofComputerScience&Technology,BUPTExample16:SolutionWemustshowthat
isreflexive,antisymm
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《胆结石的诊断与治疗》课件
- 2025新款私人车辆租赁合同范本
- 2025网约车服务合同书范本
- 《南京电力系统交流》课件
- 幼儿垃圾分类培训课件
- 甲癌术后的日常护理
- 低年级家庭教育指南
- 抗疫心理健康教育课程
- 亲子露营全攻略:用自然滋养童年让陪伴更有温度
- 四川省南充市南充高级中学2024-2025学年高二下学期4月月考生物试题
- 2022年俄乌冲突专题俄罗斯和乌克兰的恩怨情仇课件
- 舒适化医疗麻醉
- 手工小船的原理
- 2024年高级汽车维修工职业鉴定考试题库及答案
- 2024年离婚不离家互不干涉的婚姻协议书范文
- 2024秋期国家开放大学《可编程控制器应用实训》一平台在线形考(形成任务1)试题及答案
- 对我国地方档案立法原则的探讨
- 新209道100以内四个数字的加减法混合题目
- 山东省烟台市2024-2025学年高二地理下学期期末考试试题
- 非油气探矿权转让申请书
- 企业员工心理健康培训主题:构建和谐职场促进员工福祉
评论
0/150
提交评论