版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省抚顺市第一高极中学高一数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列各式:①②?③④,其中正确的有A.② B.①②
C.①②③
D.①③④参考答案:B2.函数f(x)=2x﹣1+log2x的零点所在的一个区间是()A.(,) B.(,) C.(,1) D.(1,2)参考答案:C【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】根据函数f(x)=2x﹣1+log2x,在(0,+∞)单调递增,f(1)=1,f()=﹣1,可判断分析.【解答】解:∵函数f(x)=2x﹣1+log2x,在(0,+∞)单调递增.∴f(1)=1,f()=﹣1,∴根据函数的零点的判断方法得出:零点所在的一个区间是(),故选:C.【点评】本题考查了函数的性质,函数的零点的判断方法,属于容易题.3.下列关系中,正确的个数为
(
)①
②
③
④
A.1
B.2
C.3
D.4参考答案:B4.定义在R上的奇函数f(x)满足:当x>0时,f(x)=2017x+log2017x,则在R上,函数f(x)零点的个数为()A.1个 B.2个 C.3个 D.4个参考答案:C【考点】根的存在性及根的个数判断.【分析】x>0时,求f′(x),并容易判断出f′(x)>0,所以f(x)在(0,+∞)上是单调函数.然后判断有没有x1,x2使得f(x1)f(x2)<0:分别取x=2017﹣2017,1,便可判断f(2017﹣2017)<0,f(1)>0,从而得到f(x)在(0,+∞)上有一个零点,根据奇函数的对称性便得到f(x)在(﹣∞,0)上有一个零点,而因为f(x)是奇函数,所以f(0)=0,这样便得到在R上f(x)零点个数为3.【解答】解:x>0时,f′(x)=2017xln2017+>0;∴f(x)在(0,+∞)上单调递增;取x=2017﹣2017,则f(2017﹣2017)=﹣2017;∴<2017;∴f(2017﹣2017)<0,又f(1)=2017>0;∴f(x)在(0,+∞)上有一个零点,根据奇函数关于原点对称,f(x)在(﹣∞,0)也有一个零点;又f(0)=0;∴函数f(x)在R上有3个零点.故选:C.【点评】考查奇函数的概念,函数导数符号和函数单调性的关系,函数零点的概念,以及判断函数在一区间上有没有零点,以及有几个零点的方法,奇函数图象关于原点的对称性.5.已知在平行四边形ABCD中,若,,则(
)
A.
B.
C.
D.参考答案:A略6.过点的直线与圆相切,且与直线垂直,则(
)A.
B.1
C.2
D.参考答案:C7.下列函数中,在区间为增函数的是(
).
.
.
.参考答案:A略8.函数的定义域为R,则实数的取值范围是(
)A.
B.
C.
D.参考答案:D9.函数f(x)=lnx+2x﹣7的零点所在的区间为()A.(0,1) B.(1,2) C.(2,3) D.(3,4)参考答案:C【考点】二分法的定义.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】根据函数的单调性,零点的存在性定理求解特殊函数值即可判断.【解答】解:∵函数f(x)=lnx﹣7+2x,x∈(0,+∞)单调递增,f(1)=0﹣7+2=﹣5,f(2)=ln2﹣3<0,f(3)=ln3﹣1>0,∴根据函数零点的存在性定理得出:零点所在区间是(2,3).故选:C.【点评】本题考查了函数的单调性,零点的存在性定理,难度不大,属于中档题.10.(5分)沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为() A. B. C. D. 参考答案:A考点: 简单空间图形的三视图.专题: 空间位置关系与距离.分析: 沿一个正方体三个面的对角线截得的几何体,它的侧视图首先应该是一个正方形,中间的棱在侧视图中表现为一条对角线,分析对角线的方向,并逐一对照四个答案中的视图形状,即可得到答案.解答: 由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D不正确;中间的棱在侧视图中表现为一条对角线,故C不正确;而对角线的方向应该从左上到右下,故B不正确故A选项正确.故选:A.点评: 本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键.二、填空题:本大题共7小题,每小题4分,共28分11.圆心为(1,1)且过原点的圆的方程是.参考答案:(x﹣1)2+(y﹣1)2=2【考点】圆的标准方程.【分析】由两点间的距离公式求出圆心到原点的距离,即圆的半径,代入圆的标准方程得答案.【解答】解:∵所求圆经过坐标原点,且圆心(1,1)与原点的距离为r=,∴所求圆的方程为(x﹣1)2+(y﹣1)2=2.故答案为:(x﹣1)2+(y﹣1)2=2.【点评】本题考查圆的标准方程,关键是熟记圆的标准方程的形式,是基础题.12.若不等式x2﹣ax﹣b<0的解集是2<x<3,则不等式bx2﹣ax﹣1>0的解集是:
.参考答案:【考点】一元二次不等式的应用.【分析】由不等式x2﹣ax﹣b<0的解集是2<x<3,可以求得a,b,从而可以求得不等式bx2﹣ax﹣1>0的解集.【解答】解:∵不等式x2﹣ax﹣b<0的解集是2<x<3,∴2,3是方程x2﹣ax﹣b=0的二根,∴,即a=5,b=﹣6,代入bx2﹣ax﹣1>0有6x2+5x+1<0,解得,故答案为:.13.函数的定义域是
参考答案:14.若等差数列前项的和为,且,则
参考答案:3615.函数的单调递增区间为
.参考答案:16.若角135°的终边上有一点(一4,a),则a的值是
.参考答案:417.在△ABC中,已知,,则的取值范围是________.参考答案:【分析】AB=c,AC=b,根据余弦定理可得,,由不定式的基本性质再结合角,可得的范围。【详解】由题,,又,,则有。【点睛】本题考查用余弦定理和不等式的基本性质,求角的余弦值的取值范围,属于一般题。三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若a,b∈[﹣1,1],a+b≠0时,有>0成立.(Ⅰ)判断f(x)在[﹣1,1]上的单调性,并证明;(Ⅱ)解不等式:f(2x﹣1)<f(1﹣3x);(Ⅲ)若f(x)≤m2﹣2am+1对所有的a∈[﹣1,1]恒成立,求实数m的取值范围.参考答案:【考点】函数恒成立问题.【分析】(Ⅰ)任取x1,x2∈[﹣1,1],且x1<x2,利用函数的单调性的定义证明f(x)在[﹣1,1]上单调递增.(Ⅱ)利用f(x)在[﹣1,1]上单调递增,列出不等式组,即可求出不等式的解集.(Ⅲ)问题转化为m2﹣2am≥0,对a∈[﹣1,1]恒成立,通过①若m=0,②若m≠0,分类讨论,判断求解即可.【解答】解:(Ⅰ)任取x1,x2∈[﹣1,1],且x1<x2,则﹣x2∈[﹣1,1],∵f(x)为奇函数,∴f(x1)﹣f(x2)=f(x1)+f(﹣x2)=?(x1﹣x2),…由已知得>0,x1﹣x2<0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2).∴f(x)在[﹣1,1]上单调递增.…(Ⅱ)∵f(x)在[﹣1,1]上单调递增,∴…∴不等式的解集为.…(Ⅲ)∵f(1)=1,f(x)在[﹣1,1]上单调递增.∴在[﹣1,1]上,f(x)≤1.问题转化为m2﹣2am+1≥1,即m2﹣2am≥0,对a∈[﹣1,1]恒成立.…下面来求m的取值范围.设g(a)=﹣2m?a+m2≥0.①若m=0,则g(a)=0≥0,对a∈[﹣1,1]恒成立.②若m≠0,则g(a)为a的一次函数,若g(a)≥0,对a∈[﹣1,1]恒成立,必须g(﹣1)≥0且g(1)≥0,∴m≤﹣2或m≥2.综上,m=0或m≤﹣2或m≥2…19.已知全集U={x|x≤4},集合A={x|-2<x<3},集合B={x|-3≤x≤2}.
求A∩B,,A∩,∪.参考答案:略20.设是两个不共线的向量,,若A、B、D三点共线,求k的值.参考答案:解:设:则,略21.已知函数.(Ⅰ)讨论函数的单调性;
(Ⅱ)设,证明:对任意,参考答案:略22.假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计数据(xi,yi)(i=1,2,3,4,5)由资料知y对x呈线性相关,并且统计的五组数据得平均值分别为=4,=5.4,若用五组数据得到的线性回归方程=bx+a去估计,使用8年的维修费用比使用7年的维修费用多1.1万元,(1)求回归直线方程;(2)估计使用年限为10年时,维修费用是多少?参考答案:【考点】回归分析的初步应用.【分析】(1)因为线性回归方程=bx+a经过定点(,),将,代入回归方程得5.4=4b+a;利用使用8年的维修费用比使用7年的维修费用多1.1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 承德应用技术职业学院《中药鉴定学(一)》2023-2024学年第一学期期末试卷
- 承德医学院《分布式数据库原理》2023-2024学年第一学期期末试卷
- 成都中医药大学《工程岩土学及实验》2023-2024学年第一学期期末试卷
- 2025版精密机械加工外包项目合同模板2篇
- 二零二五年度二手车收购与售后服务连锁合同2篇
- 二零二五年度体育赛事合作协议书2篇
- 场内管网施工方案
- 2024消防设施智能化改造与日常维护服务协议3篇
- 二零二五年度个人股权赠与与财产分割协议书3篇
- 2024学校教师学术交流与合作研究合同3篇
- 人体寄生虫表格总结超全(原虫部分)
- 合作投资酒店意向合同范例
- 2024年度新能源汽车充电物流合同
- 2024年学校意识形态工作总结模版(3篇)
- 机械设备招投标授权委托书模板
- 科研年终总结汇报
- 汽车维修安全应急预案范文(5篇)
- 安全教育教案大班40篇
- 2024-2030年中国清洁供热行业发展趋势与投资前景预测报告版
- 2025届上海市交大附中嘉定分校物理高二上期末达标检测试题含解析
- 放飞心灵 激扬青春-中职生心理健康学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论