![福建省惠安一中等2024届高考数学全真模拟密押卷含解析_第1页](http://file4.renrendoc.com/view2/M02/36/2D/wKhkFmZJUKuAQZP-AAI9Q-yIuTQ957.jpg)
![福建省惠安一中等2024届高考数学全真模拟密押卷含解析_第2页](http://file4.renrendoc.com/view2/M02/36/2D/wKhkFmZJUKuAQZP-AAI9Q-yIuTQ9572.jpg)
![福建省惠安一中等2024届高考数学全真模拟密押卷含解析_第3页](http://file4.renrendoc.com/view2/M02/36/2D/wKhkFmZJUKuAQZP-AAI9Q-yIuTQ9573.jpg)
![福建省惠安一中等2024届高考数学全真模拟密押卷含解析_第4页](http://file4.renrendoc.com/view2/M02/36/2D/wKhkFmZJUKuAQZP-AAI9Q-yIuTQ9574.jpg)
![福建省惠安一中等2024届高考数学全真模拟密押卷含解析_第5页](http://file4.renrendoc.com/view2/M02/36/2D/wKhkFmZJUKuAQZP-AAI9Q-yIuTQ9575.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省惠安一中等2024届高考数学全真模拟密押卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.阿基米德(公元前287年—公元前212年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”.他特别喜欢这个结论,要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边,表面积为的圆柱的底面直径与高都等于球的直径,则该球的体积为()A. B. C. D.2.某几何体的三视图如图所示,则该几何体的体积是()A. B. C. D.3.定义在上的奇函数满足,若,,则()A. B.0 C.1 D.24.圆锥底面半径为,高为,是一条母线,点是底面圆周上一点,则点到所在直线的距离的最大值是()A. B. C. D.5.在正方体中,E是棱的中点,F是侧面内的动点,且与平面的垂线垂直,如图所示,下列说法不正确的是()A.点F的轨迹是一条线段 B.与BE是异面直线C.与不可能平行 D.三棱锥的体积为定值6.已知定义在上的函数满足,且当时,,则方程的最小实根的值为()A. B. C. D.7.在中,角、、的对边分别为、、,若,,,则()A. B. C. D.8.复数为纯虚数,则()A.i B.﹣2i C.2i D.﹣i9.已知函数,若函数有三个零点,则实数的取值范围是()A. B. C. D.10.已知,是函数图像上不同的两点,若曲线在点,处的切线重合,则实数的最小值是()A. B. C. D.111.设,则““是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必条件12.木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等比数列{an}的前n项和为Sn,若a214.在平面直角坐标系中,若双曲线经过点(3,4),则该双曲线的准线方程为_____.15.如图,在体积为V的圆柱中,以线段上的点O为项点,上下底面为底面的两个圆锥的体积分别为,,则的值是______.16.如图是一个算法伪代码,则输出的的值为_______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知分别是内角的对边,满足(1)求内角的大小(2)已知,设点是外一点,且,求平面四边形面积的最大值.18.(12分)已知函数,当时,有极大值3;(1)求,的值;(2)求函数的极小值及单调区间.19.(12分)已知函数.(1)求函数的最小正周期以及单调递增区间;(2)已知,若,,,求的面积.20.(12分)已知函数的最小正周期是,且当时,取得最大值.(1)求的解析式;(2)作出在上的图象(要列表).21.(12分)如图,四边形为菱形,为与的交点,平面.(1)证明:平面平面;(2)若,,三棱锥的体积为,求菱形的边长.22.(10分)已知函数(,),且对任意,都有.(Ⅰ)用含的表达式表示;(Ⅱ)若存在两个极值点,,且,求出的取值范围,并证明;(Ⅲ)在(Ⅱ)的条件下,判断零点的个数,并说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
设球的半径为R,根据组合体的关系,圆柱的表面积为,解得球的半径,再代入球的体积公式求解.【详解】设球的半径为R,根据题意圆柱的表面积为,解得,所以该球的体积为.故选:C【点睛】本题主要考查组合体的表面积和体积,还考查了对数学史了解,属于基础题.2、A【解析】
观察可知,这个几何体由两部分构成,:一个半圆柱体,底面圆的半径为1,高为2;一个半球体,半径为1,按公式计算可得体积。【详解】设半圆柱体体积为,半球体体积为,由题得几何体体积为,故选A。【点睛】本题通过三视图考察空间识图的能力,属于基础题。3、C【解析】
首先判断出是周期为的周期函数,由此求得所求表达式的值.【详解】由已知为奇函数,得,而,所以,所以,即的周期为.由于,,,所以,,,.所以,又,所以.故选:C【点睛】本小题主要考查函数的奇偶性和周期性,属于基础题.4、C【解析】分析:作出图形,判断轴截面的三角形的形状,然后转化求解的位置,推出结果即可.详解:圆锥底面半径为,高为2,是一条母线,点是底面圆周上一点,在底面的射影为;,,过的轴截面如图:,过作于,则,在底面圆周,选择,使得,则到的距离的最大值为3,故选:C点睛:本题考查空间点线面距离的求法,考查空间想象能力以及计算能力,解题的关键是作出轴截面图形,属中档题.5、C【解析】
分别根据线面平行的性质定理以及异面直线的定义,体积公式分别进行判断.【详解】对于,设平面与直线交于点,连接、,则为的中点分别取、的中点、,连接、、,,平面,平面,平面.同理可得平面,、是平面内的相交直线平面平面,由此结合平面,可得直线平面,即点是线段上上的动点.正确.对于,平面平面,和平面相交,与是异面直线,正确.对于,由知,平面平面,与不可能平行,错误.对于,因为,则到平面的距离是定值,三棱锥的体积为定值,所以正确;故选:.【点睛】本题考查了正方形的性质、空间位置关系、空间角、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.6、C【解析】
先确定解析式求出的函数值,然后判断出方程的最小实根的范围结合此时的,通过计算即可得到答案.【详解】当时,,所以,故当时,,所以,而,所以,又当时,的极大值为1,所以当时,的极大值为,设方程的最小实根为,,则,即,此时令,得,所以最小实根为411.故选:C.【点睛】本题考查函数与方程的根的最小值问题,涉及函数极大值、函数解析式的求法等知识,本题有一定的难度及高度,是一道有较好区分度的压轴选这题.7、B【解析】
利用两角差的正弦公式和边角互化思想可求得,可得出,然后利用余弦定理求出的值,最后利用正弦定理可求出的值.【详解】,即,即,,,得,,.由余弦定理得,由正弦定理,因此,.故选:B.【点睛】本题考查三角形中角的正弦值的计算,考查两角差的正弦公式、边角互化思想、余弦定理与正弦定理的应用,考查运算求解能力,属于中等题.8、B【解析】
复数为纯虚数,则实部为0,虚部不为0,求出,即得.【详解】∵为纯虚数,∴,解得..故选:.【点睛】本题考查复数的分类,属于基础题.9、B【解析】
根据所给函数解析式,画出函数图像.结合图像,分段讨论函数的零点情况:易知为的一个零点;对于当时,由代入解析式解方程可求得零点,结合即可求得的范围;对于当时,结合导函数,结合导数的几何意义即可判断的范围.综合后可得的范围.【详解】根据题意,画出函数图像如下图所示:函数的零点,即.由图像可知,,所以是的一个零点,当时,,若,则,即,所以,解得;当时,,则,且若在时有一个零点,则,综上可得,故选:B.【点睛】本题考查了函数图像的画法,函数零点定义及应用,根据零点个数求参数的取值范围,导数的几何意义应用,属于中档题.10、B【解析】
先根据导数的几何意义写出在两点处的切线方程,再利用两直线斜率相等且纵截距相等,列出关系树,从而得出,令函数,结合导数求出最小值,即可选出正确答案.【详解】解:当时,,则;当时,则.设为函数图像上的两点,当或时,,不符合题意,故.则在处的切线方程为;在处的切线方程为.由两切线重合可知,整理得.不妨设则,由可得则当时,的最大值为.则在上单调递减,则.故选:B.【点睛】本题考查了导数的几何意义,考查了推理论证能力,考查了函数与方程、分类与整合、转化与化归等思想方法.本题的难点是求出和的函数关系式.本题的易错点是计算.11、B【解析】
解出两个不等式的解集,根据充分条件和必要条件的定义,即可得到本题答案.【详解】由,得,又由,得,因为集合,所以“”是“”的必要不充分条件.故选:B【点睛】本题主要考查必要不充分条件的判断,其中涉及到绝对值不等式和一元二次不等式的解法.12、C【解析】
由三视图知几何体是一个从圆锥中截出来的锥体,圆锥底面半径为,圆锥的高,截去的底面劣弧的圆心角为,底面剩余部分的面积为,利用锥体的体积公式即可求得.【详解】由已知中的三视图知圆锥底面半径为,圆锥的高,圆锥母线,截去的底面弧的圆心角为120°,底面剩余部分的面积为,故几何体的体积为:.故选C.【点睛】本题考查了三视图还原几何体及体积求解问题,考查了学生空间想象,数学运算能力,难度一般.二、填空题:本题共4小题,每小题5分,共20分。13、-2【解析】试题分析:∵a2考点:等比数列性质及求和公式14、【解析】
代入求解得,再求准线方程即可.【详解】解:双曲线经过点,,解得,即.又,故该双曲线的准线方程为:.故答案为:.【点睛】本题主要考查了双曲线的准线方程求解,属于基础题.15、【解析】
根据圆柱的体积为,以及圆锥的体积公式,计算即得.【详解】由题得,,得.故答案为:【点睛】本题主要考查圆锥体的体积,是基础题.16、5【解析】
执行循环结构流程图,即得结果.【详解】执行循环结构流程图得,结束循环,输出.【点睛】本题考查循环结构流程图,考查基本分析与运算能力,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)首先利用诱导公式及两角和的余弦公式得到,再由同角三角三角的基本关系得到,即可求出角;(2)由(1)知,是正三角形,设,由余弦定理可得:,则,得到,再利用辅助角公式化简,最后由正弦函数的性质求得最大值;【详解】解:(1)由,,,,,,,;(2)由(1)知,是正三角形,设,由余弦定理得:,,,所以当时有最大值【点睛】本题考查同角三角函数的基本关系,三角恒等变换公式的应用,三角形面积公式的应用,以及正弦函数的性质,属于中档题.18、(1);(2)极小值为,递减区间为:,递增区间为.【解析】
(1)由题意得到关于实数的方程组,求解方程组,即可求得的值;(2)结合(1)中的值得出函数的解析式,即可利用导数求得函数的单调区间和极小值.【详解】(1)由题意,函数,则,由当时,有极大值,则,解得.(2)由(1)可得函数的解析式为,则,令,即,解得,令,即,解得或,所以函数的单调减区间为,递增区间为,当时,函数取得极小值,极小值为.当时,有极大值3.【点睛】本题主要考查了函数的极值的概念,以及利用导数求解函数的单调区间和极值,其中解答中熟记函数的极值的概念,以及函数的导数与原函数的关系,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.19、(1)最小正周期为,单调递增区间为;(2).【解析】
(1)利用三角恒等变换思想化简函数的解析式为,利用正弦型函数的周期公式可求得函数的最小正周期,解不等式可求得该函数的单调递增区间;(2)由求得,由得出或,分两种情况讨论,结合余弦定理解三角形,进行利用三角形的面积公式可求得的面积.【详解】(1),所以,函数的最小正周期为,由得,因此,函数的单调递增区间为;(2)由,得,或,或,,,又,,即.①当时,即,则由,,得,则,此时,的面积为;②当时,则,即,则由,解得,,.综上,的面积为.【点睛】本题考查正弦型函数的周期和单调区间的求解,同时也考查了三角形面积的计算,涉及余弦定理解三角形的应用,考查计算能力,属于中等题.20、(1);(2)见解析.【解析】
(1)根据函数的最小正周期可求出的值,由该函数的最大值可得出的值,再由,结合的取值范围可求得的值,由此可得出函数的解析式;(2)由计算出的取值范围,据此列表、描点、连线可得出函数在区间上的图象.【详解】(1)因为函数的最小正周期是,所以.又因为当时,函数取得最大值,所以,同时,得,因为,所以,所以;(2)因为,所以,列表如下:描点、连线得图象:【点睛】本题考查正弦函数解析式的求解,同时也考查了利用五点作图法作图,考查分析问题与解决问题的能力,属于中等题.21、(1)证明见解析;(2)1【解析】
(1)由菱形的性质和线面垂直的性质,可得平面,再由面面垂直的判定定理,即可得证;(2)设,分别求得,和的长,运用三棱锥的体积公式,计算可得所求值.【详解】(1)四边形为菱形,,平面,,又,平面,又平面,平面平面;(2)设,在菱形中,由,可得,,,,在中,可得,由面,知,为直角三角形,可得,三棱锥的体积,,菱形的边长为1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年喇叭开关项目可行性研究报告
- 2025至2031年中国串极电机行业投资前景及策略咨询研究报告
- 2025年中性护色洗衣液项目可行性研究报告
- 2025至2030年中国香熏炉数据监测研究报告
- 2025至2030年金刚石开槽项目投资价值分析报告
- 2025至2030年色织麻棉混纺布项目投资价值分析报告
- 2025至2030年狭型扭总成项目投资价值分析报告
- 2025至2030年气锯锯条项目投资价值分析报告
- 2025至2030年旋翼湿式立式热水表项目投资价值分析报告
- 2025至2030年子宫洗涤器项目投资价值分析报告
- 国家开放大学护理社会实践报告
- 采购经理年终述职报告
- 网络直播平台用户行为规范及管理制度
- 脑卒中早期识别和健康教育
- 2024年奥迪正规购车合同范本
- 2024年华东电网考试题库
- 工程项目归档资料目录范本
- 地 理探究与实践 保护世界文化遗产课件 2024-2025学年地理湘教版七年级上册
- 医院6S管理成果汇报
- 2024年人教版小学六年级数学(上册)期末试卷附答案
- GB/T 4706.27-2024家用和类似用途电器的安全第27部分:风扇的特殊要求
评论
0/150
提交评论