版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省滁州市九校联考高三压轴卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是的共轭复数,则()A. B. C. D.2.已知随机变量满足,,.若,则()A., B.,C., D.,3.已知函数,关于的方程R)有四个相异的实数根,则的取值范围是(
)A. B. C. D.4.执行如图的程序框图,若输出的结果,则输入的值为()A. B.C.3或 D.或5.设向量,满足,,,则的取值范围是A. B.C. D.6.设,,则的值为()A. B.C. D.7.已知命题p:若,,则;命题q:,使得”,则以下命题为真命题的是()A. B. C. D.8.执行如图所示的程序框图后,输出的值为5,则的取值范围是().A. B. C. D.9.已知为定义在上的奇函数,且满足当时,,则()A. B. C. D.10.已知直线与圆有公共点,则的最大值为()A.4 B. C. D.11.已知函数在上有两个零点,则的取值范围是()A. B. C. D.12.若圆锥轴截面面积为,母线与底面所成角为60°,则体积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.将含有甲、乙、丙的6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一个组的概率为__________.14.如图,在菱形ABCD中,AB=3,,E,F分别为BC,CD上的点,,若线段EF上存在一点M,使得,则____________,____________.(本题第1空2分,第2空3分)15.过抛物线C:()的焦点F且倾斜角为锐角的直线l与C交于A,B两点,过线段的中点N且垂直于l的直线与C的准线交于点M,若,则l的斜率为______.16.命题“对任意,”的否定是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知倾斜角为的直线经过抛物线的焦点,与抛物线相交于、两点,且.(1)求抛物线的方程;(2)设为抛物线上任意一点(异于顶点),过做倾斜角互补的两条直线、,交抛物线于另两点、,记抛物线在点的切线的倾斜角为,直线的倾斜角为,求证:与互补.18.(12分)已知数列满足,且.(1)求证:数列是等差数列,并求出数列的通项公式;(2)求数列的前项和.19.(12分)已知函数有两个极值点,.(1)求实数的取值范围;(2)证明:.20.(12分)已知数列满足.(1)求数列的通项公式;(2)设数列的前项和为,证明:.21.(12分)已知函数,.(1)证明:函数的极小值点为1;(2)若函数在有两个零点,证明:.22.(10分)已知抛物线的焦点也是椭圆的一个焦点,与的公共弦的长为.(1)求的方程;(2)过点的直线与相交于、两点,与相交于、两点,且与同向,设在点处的切线与轴的交点为,证明:直线绕点旋转时,总是钝角三角形;(3)为上的动点,、为长轴的两个端点,过点作的平行线交椭圆于点,过点作的平行线交椭圆于点,请问的面积是否为定值,并说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
先利用复数的除法运算法则求出的值,再利用共轭复数的定义求出a+bi,从而确定a,b的值,求出a+b.【详解】i,∴a+bi=﹣i,∴a=0,b=﹣1,∴a+b=﹣1,故选:A.【点睛】本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.2、B【解析】
根据二项分布的性质可得:,再根据和二次函数的性质求解.【详解】因为随机变量满足,,.所以服从二项分布,由二项分布的性质可得:,因为,所以,由二次函数的性质可得:,在上单调递减,所以.故选:B【点睛】本题主要考查二项分布的性质及二次函数的性质的应用,还考查了理解辨析的能力,属于中档题.3、A【解析】=,当时时,单调递减,时,单调递增,且当,当,
当时,恒成立,时,单调递增且,方程R)有四个相异的实数根.令=则,,即.4、D【解析】
根据逆运算,倒推回求x的值,根据x的范围取舍即可得选项.【详解】因为,所以当,解得
,所以3是输入的x的值;当时,解得,所以是输入的x的值,所以输入的x的值为
或3,故选:D.【点睛】本题考查了程序框图的简单应用,通过结果反求输入的值,属于基础题.5、B【解析】
由模长公式求解即可.【详解】,当时取等号,所以本题答案为B.【点睛】本题考查向量的数量积,考查模长公式,准确计算是关键,是基础题.6、D【解析】
利用倍角公式求得的值,利用诱导公式求得的值,利用同角三角函数关系式求得的值,进而求得的值,最后利用正切差角公式求得结果.【详解】,,,,,,,,故选:D.【点睛】该题考查的是有关三角函数求值问题,涉及到的知识点有诱导公式,正切倍角公式,同角三角函数关系式,正切差角公式,属于基础题目.7、B【解析】
先判断命题的真假,进而根据复合命题真假的真值表,即可得答案.【详解】,,因为,,所以,所以,即命题p为真命题;画出函数和图象,知命题q为假命题,所以为真.故选:B.【点睛】本题考查真假命题的概念,以及真值表的应用,解题的关键是判断出命题的真假,难度较易.8、C【解析】
框图的功能是求等比数列的和,直到和不满足给定的值时,退出循环,输出n.【详解】第一次循环:;第二次循环:;第三次循环:;第四次循环:;此时满足输出结果,故.故选:C.【点睛】本题考查程序框图的应用,建议数据比较小时,可以一步一步的书写,防止错误,是一道容易题.9、C【解析】
由题设条件,可得函数的周期是,再结合函数是奇函数的性质将转化为函数值,即可得到结论.【详解】由题意,,则函数的周期是,所以,,又函数为上的奇函数,且当时,,所以,.故选:C.【点睛】本题考查函数的周期性,由题设得函数的周期是解答本题的关键,属于基础题.10、C【解析】
根据表示圆和直线与圆有公共点,得到,再利用二次函数的性质求解.【详解】因为表示圆,所以,解得,因为直线与圆有公共点,所以圆心到直线的距离,即,解得,此时,因为,在递增,所以的最大值.故选:C【点睛】本题主要考查圆的方程,直线与圆的位置关系以及二次函数的性质,还考查了运算求解的能力,属于中档题.11、C【解析】
对函数求导,对a分类讨论,分别求得函数的单调性及极值,结合端点处的函数值进行判断求解.【详解】∵,.当时,,在上单调递增,不合题意.当时,,在上单调递减,也不合题意.当时,则时,,在上单调递减,时,,在上单调递增,又,所以在上有两个零点,只需即可,解得.综上,的取值范围是.故选C.【点睛】本题考查了利用导数解决函数零点的问题,考查了函数的单调性及极值问题,属于中档题.12、D【解析】
设圆锥底面圆的半径为,由轴截面面积为可得半径,再利用圆锥体积公式计算即可.【详解】设圆锥底面圆的半径为,由已知,,解得,所以圆锥的体积.故选:D【点睛】本题考查圆锥的体积的计算,涉及到圆锥的定义,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先求出总的基本事件数,再求出甲、乙至少一人参加指挥交通且甲、丙不在同一组的基本事件数,然后根据古典概型求解.【详解】6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料的基本事件总数共有个,甲、乙至少一人参加指挥交通且甲、丙不在同一组的基本事件个数有:个,所以甲、乙至少一人参加指挥交通且甲、丙不在同一组的概率为.故答案为:【点睛】本题主要考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是中档题.14、【解析】
根据题意,设,则,所以,解得,所以,从而有.15、【解析】
分别过A,B,N作抛物线的准线的垂线,垂足分别为,,,根据抛物线定义和求得,从而求得直线l的倾斜角.【详解】分别过A,B,N作抛物线的准线的垂线,垂足分别为,,,由抛物线的定义知,,,因为,所以,所以,即直线的倾斜角为,又直线与直线l垂直且直线l的倾斜角为锐角,所以直线l的倾斜角为,.故答案为:【点睛】此题考查抛物线的定义,根据已知条件做出辅助线利用抛物线定义和几何关系即可求解,属于较易题目.16、存在,使得【解析】试题分析:根据命题否定的概念,可知命题“对任意,”的否定是“存在,使得”.考点:命题的否定.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】
(1)根据题意,设直线方程为,联立方程,根据抛物线的定义即可得到结论;(2)根据题意,设的方程为,联立方程得,同理可得,进而得到,再利用点差法得直线的斜率,利用切线与导数的关系得直线的斜率,进而可得与互补.【详解】(1)由题意设直线的方程为,令、,联立,得,根据抛物线的定义得,又,故所求抛物线方程为.(2)依题意,设,,设的方程为,与联立消去得,,同理,直线的斜率=切线的斜率,由,即与互补.【点睛】本题考查直线与抛物线的位置关系的综合应用,直线斜率的应用,考查分析问题解决问题的能力,属于中档题.18、(1)证明见解析,;(2).【解析】
(1)将等式变形为,进而可证明出是等差数列,确定数列的首项和公差,可求得的表达式,进而可得出数列的通项公式;(2)利用错位相减法可求得数列的前项和.【详解】(1)因为,所以,即,所以数列是等差数列,且公差,其首项所以,解得;(2),①,②①②,得,所以.【点睛】本题考查利用递推公式证明等差数列,同时也考查了错位相减法求和,考查推理能力与计算能力,属于中等题.19、(1)(2)证明见解析【解析】
(1)先求得导函数,根据两个极值点可知有两个不等实根,构造函数,求得;讨论和两种情况,即可确定零点的情况,即可由零点的情况确定的取值范围;(2)根据极值点定义可知,,代入不等式化简变形后可知只需证明;构造函数,并求得,进而判断的单调区间,由题意可知,并设,构造函数,并求得,即可判断在内的单调性和最值,进而可得,即可由函数性质得,进而由单调性证明,即证明,从而证明原不等式成立.【详解】(1)函数则,因为存在两个极值点,,所以有两个不等实根.设,所以.①当时,,所以在上单调递增,至多有一个零点,不符合题意.②当时,令得,0减极小值增所以,即.又因为,,所以在区间和上各有一个零点,符合题意,综上,实数的取值范围为.(2)证明:由题意知,,所以,.要证明,只需证明,只需证明.因为,,所以.设,则,所以在上是增函数,在上是减函数.因为,不妨设,设,,则,当时,,,所以,所以在上是增函数,所以,所以,即.因为,所以,所以.因为,,且在上是减函数,所以,即,所以原命题成立,得证.【点睛】本题考查了利用导数研究函数的极值点,由导数证明不等式,构造函数法的综合应用,极值点偏移证明不等式成立的应用,是高考的常考点和热点,属于难题.20、(1);(2)见解析.【解析】
(1)令,,利用可求得数列的通项公式,由此可得出数列的通项公式;(2)求得,利用裂项相消法求得,进而可得出结论.【详解】(1)令,,当时,;当时,,则,故;(2),.【点睛】本题考查利用求通项,同时也考查了裂项相消法求和,考查计算能力与推理能力,属于基础题.21、(1)见解析(2)见解析【解析】
(1)利用导函数的正负确定函数的增减.(2)函数在有两个零点,即方程在区间有两解,令通过二次求导确定函数单调性证明参数范围.【详解】解:(1)证明:因为,当时,,,所以在区间递减;当时,,所以,所以在区间递增;且,所以函数的极小值点为1(2)函数在有两个零点,即方程在区间有两解,令,则令,则,所以在单调递增,又,故存在唯一的,使得,即,所以在单调递减,在区间单调递增,且,又因为,所以,方程关于的方程在有两个零点,由的图象可知,,即.【点睛】本题考查利用导数研究函数单调性,确定函数的极值,利用二次求导,零点存在性定理确定参数范围,属于难题.22、(1);(2)证明见解析;(3)是,理由见解析.【解析】
(1)根据两个曲线的焦点相同,得到,再根据与的公共弦长为得出,可求出和的值,进而可得出曲线的方程;(2)设点,根据导数的几何意义得到曲线在点处的切线方程,求出点的坐标,利用向量的数量积得出,则问题得以证明;(3)设直线,直线,、、,推导出以及,求出和,通过化简计算可得出为定值,进而可得出结论.【详解】(1)由知其焦点的坐标为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信息论与编码理论基础(第三章)
- 技术创新与研发项目申报管理制度
- 部编版五年级语文下册第七单元各类阅读真题(含小古文、非连续性文本等)名师解析连载
- 基础知识综合(原卷版)-2025年中考语文复习专练
- 2024年江苏客运员考试题库及答案
- 2024年黑龙江客运从业资格证考试题答案解析
- 2024年海口客运从业资格考试题库app
- 2024年黑河小车客运从业资格证考试
- 2024年渭南办理客运从业资格证版试题
- 2024年安徽客运资格证培训考试题
- 《咖啡培训课程》课件
- 护理专业人才培养方案
- 中国石油天然气股份有限公司油气田站场目视化设计规定
- 基于豆瓣网电影数据的分析与可视化
- 心电监护并发症预防及处理
- 甲鱼宣传方案策划
- 脑梗死的护理病历
- 学校个性化课程管理制度
- 肺炎支原体性肺炎护理课件
- 黑色素瘤护理的课件
- 水性可剥离涂料的制备
评论
0/150
提交评论