安徽省滁州市西卅店中学高一数学文上学期摸底试题含解析_第1页
安徽省滁州市西卅店中学高一数学文上学期摸底试题含解析_第2页
安徽省滁州市西卅店中学高一数学文上学期摸底试题含解析_第3页
安徽省滁州市西卅店中学高一数学文上学期摸底试题含解析_第4页
安徽省滁州市西卅店中学高一数学文上学期摸底试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省滁州市西卅店中学高一数学文上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数的单调减区间是(

)A.(-∞,2)

B.(2,+∞)

C.(2,5)

D.(-1,2)参考答案:C由﹣x2+4x+5≥0可解得﹣1≤x≤5,结合二次函数的性质和复合函数的单调性可得:函数y=的单调减区间是(2,5)故选:C.

2.若函数的图像经过第二,第三和第四象限,则一定有A.B.C.D.参考答案:A略3.函数y=cscxcos3x–cscxcos5x的最小正周期是(

)(A)

(B)

(C)π

(D)2π参考答案:B4.已知函数(,)的最小正周期是,将函数f(x)的图象向左平移个单位长度后所得的函数图象过点,则函数(

)A.有一个对称中心 B.有一条对称轴C.在区间上单调递减 D.在区间上单调递增参考答案:B由题,平移后得到的函数是,其图象过点,,因为,,,故选B.点睛:本题考查的是的图象及性质.解决本题的关键有两点:一是图象向左平移变换时要弄清是加还是减,是x加减,还是2x加减,另一方面是根据图象过点确定的值时,要结合五点及确定其取值,得到函数的解析式,再判断其对称性和单调性.5.如图,在半径为1的半圆内,放置一个边长为的正方形ABCD,向半圆内任取一点,则该点落在正方形内的槪率为()A. B. C. D.参考答案:B【考点】CF:几何概型.【分析】根据几何概型的概率公式求出对应的区域面积即可.【解答】解:半圆的面积S=,正方形的面积S1=,则对应的概率P==,故选:B6.已知函数(

A.b

B.-b

C.

D.-参考答案:C7.已知等比数列{an}的公比是q,首项a1<0,前n项和为Sn,设a1,a4,a3﹣a1成等差数列,若Sk<5Sk﹣4,则正整数k的最大值是()A.4 B.5 C.14 D.15参考答案:A【分析】运用等差数列的中项的性质,结合等比数列的定义,可得公比,再由等比数列的求和公式,以及不等式的解法,即可得到所求最大值.【解答】解:若a1,a4,a3﹣a1成等差数列,可得2a4=a1+a3﹣a1=a3,即有公比q==,由Sk<5Sk﹣4,可得<5?,由a1<0,化简可得1﹣>5﹣,即为2k<,可得正整数k的最大值为k为4.故选:A.8.若函数f(x)唯一的一个零点同时在区间(0,16),(0,8),(0,6),(2,4)内,那么下列命题中正确的是(

)A.f(x)在区间(2,3)内有零点 B.f(x)在区间(3,4)内有零点C.f(x)在区间(3,16)内有零点 D.f(x)在区间(0,2)内没零点参考答案:D考点:函数零点的判定定理.专题:函数的性质及应用.分析:由已知函数f(x)唯一的一个零点同时在区间(0,16),(0,8),(0,6),(2,4)内,那么函数f(x)在区间(0,2)和(4,16)必然无零点,据此可用反证法证明.解答:解:下面用反证法证明f(x)在区间(0,2)内没零点.假设函数f(x)在区间(0,2)内有零点,由已知函数f(x)唯一的一个零点同时在区间(0,16),(0,8),(0,6),(2,4)内,这也就是说函数f(x)唯一的一个零点也在区间(2,4)内,再由假设得到函数f(x)在区间(0,2)和(2,4)内分别各有一个零点,由此得到函数f(x)有两个不同零点.这与已知函数f(x)唯一的一个零点同时在区间(0,16),(0,8),(0,6),(2,4)内矛盾.故假设不成立,因此函数f(x)在区间(0,2)内没零点.故选D.点评:本题考查函数的零点,正确理解已知条件和使用反证法是解题的关键9.函数的定义域是(

)ks5uA.R

B.

C.

D.参考答案:C略10.已知某个几何体的三视图如右图,根据图中标出的尺寸(单位:),可得几何体的体积是(

A.;

B.;C.;

D..参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.(5分)已知52x=25,则5﹣x=

.参考答案:考点: 有理数指数幂的化简求值.专题: 计算题.分析: 根据指数幂的运算性质进行计算即可.解答: ∵52x=25=52,∴2x=2,x=1,∴5﹣x=5﹣1=,故答案为:.点评: 本题考查了指数幂的运算性质,是一道基础题.12.已知函数f(x)=2sin(ωx﹣)(ω>0)与g(x)=cos(2x+φ)(0<φ<π)的图象对称轴完全相同,则g()的值为.参考答案:【考点】函数y=Asin(ωx+φ)的图象变换.【专题】计算题;数形结合;数形结合法;三角函数的求值;三角函数的图像与性质.【分析】分别求得2个函数的图象的对称轴,根据题意可得ω=2,=﹣,由此求得φ的值,可得g(x)的解析式,从而求得g()的值.【解答】解:∵函数f(x)=2sin(ωx﹣)(ω>0)的对称轴方程为ωx﹣=kπ+,即x=+,k∈z.g(x)=cos(2x+φ)(0<φ<π)的图象的对称轴为2x+φ=kπ,即x=﹣,k∈z.∵函数f(x)=2sin(ωx﹣)(ω>0)和g(x)=cos(2x+φ)(0<φ<π)的图象的对称轴完全相同,∴ω=2,再由0<φ<π,可得=﹣,∴φ=,∴g(x)=cos(2x+φ)=cos(2x+),g()=cos=.故答案为:.【点评】本题主要考查了三角函数的对称轴方程的求法,注意两个函数的对称轴方程相同的应用,找出一个对称轴方程就满足题意,考查计算能力,属于中档题.13.一个圆锥有三条母线两两垂直,则它的侧面展开图的圆心角大小为

.参考答案:略14.若曲线与直线有两个交点,则的取值范围是___________.参考答案:15.计算:

.参考答案:,故答案为.

16.已知样本数据a1,a2,a3,a4,a5的方差s2=(a12+a22+a32+a42+a52﹣80),则样本数据2a1+1,2a2+1,2a3+1,2a4+1,2a5+1的平均数为

.参考答案:9或﹣7.【分析】设样本数据a1,a2,a3,a4,a5的平均数为a,推导出5a2=80,解得a=4,由此能求出2a1+1,2a2+1,2a3+1,2a4+1,2a5+1的平均数.【解答】解:设样本数据a1,a2,a3,a4,a5的平均数为a,∵样本数据a1,a2,a3,a4,a5的方差s2=(a12+a22+a32+a42+a52﹣80),∴S2=[(a1﹣a)2+(a2﹣a)2+(a3﹣a)2+(a4﹣a)2+(a5﹣a)2]=[a12+a22+a32+a42+a52﹣2(a1+a2+a3+a4+a5)a+5a2]=(a12+a22+a32+a42+a52﹣5a2)=(a12+a22+a32+a42+a52﹣80),∴5a2=80,解得a=±4,∴2a1+1,2a2+1,2a3+1,2a4+1,2a5+1的平均数为2a+1,当a=4时,2a+1=9当a=﹣4时,2a+1=﹣7.故答案为:9或﹣7.17.求值:sin50°(1+tan10°)=

. 参考答案:1【考点】三角函数的恒等变换及化简求值. 【分析】先把原式中切转化成弦,利用两角和公式和整理后,运用诱导公式和二倍角公式化简整理求得答案. 【解答】解:原式=sin50°=cos40°===1 故答案为:1 【点评】本题主要考查了三角函数的恒等变换及其化简求值,以及两角和公式,诱导公式和二倍角公式的化简求值.考查了学生对三角函数基础知识的综合运用. 三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数,若同时满足以下条件:①f(x)在D上单调递减或单调递增;②存在区间,使f(x)在[a,b]上的值域是[a,b],那么称为闭函数.(1)求闭函数符合条件②的区间[a,b];(2)判断函数是不是闭函数?若是请找出区间[a,b];若不是请说明理由;(3)若是闭函数,求实数k的取值范围.参考答案:(1)由y=﹣x3在R上单减,可得,可求a,b(2)由函数y=2x+lgx在(0,+∞)单调递增可知即,结合对数函数的单调性可判断(3)易知y=k+在[﹣2,+∞)上单调递增.设满足条件B的区间为[a,b],则方程组有解,方程x=k+至少有两个不同的解,即方程x2﹣(2k+1)x+k2﹣2=0有两个都不小于k的不根.结合二次方程的实根分布可求k的范围另解:(1)易知函数f(x)=﹣x3是减函数,则有,可求(2)取特值说明即可,不是闭函数.(3)由函数f(x)=k+是闭函数,易知函数是增函数,则在区间[a,b]上函数的值域也是[a,b],说明函数f(x)图象与直线y=x有两个不同交点,结合函数的图象可求【解答】解:(1)∵y=﹣x3在R上单减,所以区间[a,b]满足解得a=﹣1,b=1(2)∵函数y=2x+lgx在(0,+∞)单调递增假设存在满足条件的区间[a,b],a<b,则即∴lgx=﹣x在(0,+∞)有两个不同的实数根,但是结合对数函数的单调性可知,y=lgx与y=﹣x只有一个交点故不存在满足条件的区间[a,b],函数y=2x+lgx是不是闭函数(3)易知y=k+在[﹣2,+∞)上单调递增.设满足条件B的区间为[a,b],则方程组有解,方程x=k+至少有两个不同的解即方程x2﹣(2k+1)x+k2﹣2=0有两个都不小于k的不根.∴得,即所求.另解:(1)易知函数f(x)=﹣x3是减函数,则有,解得,(2)∵函数y=2x+lgx在(0,+∞)单调递增假设存在满足条件的区间[a,b],a<b,则即∴lgx=﹣x在(0,+∞)有两个不同的实数根,但是结合对数函数的单调性可知,y=lgx与y=﹣x只有一个根,所以,函数y=2x+lgx是不是闭函(3)由函数f(x)=k+是闭函数,易知函数是增函数,则在区间[a,b]上函数的值域也是[a,b],说明函数f(x)图象与直线y=x有两个不同交点,令k+则有k=x﹣=,(令t=),如图则直线若有两个交点,则有k.19.某校高一新生共有320人,其中男生192人,女生128人.为了解高一新生对数学选修课程的看法,采用分层抽样的方法从高一新生中抽取5人进行访谈.(Ⅰ)这5人中男生、女生各多少名?(Ⅱ)从这5人中随即抽取2人完成访谈问卷,求2人中恰有1名女生的概率.参考答案:(Ⅰ)男生3人,女生2人;(Ⅱ)【分析】(Ⅰ)利用分层抽样按比例计算出这5人中男生人数和女生人数.(Ⅱ)记这5人中的3名男生为B1,B2,B3,2名女生为G1,G2,利用列举法能求出抽取的2人中恰有1名女生的概率.【详解】(Ⅰ)这5人中男生人数为,女生人数为.(Ⅱ)记这5人中的3名男生为B1,B2,B3,2名女生为G1,G2,则样本空间为:Ω={(B1,B2),(B1,B3),(B1,G1),(B1,G2),(B2,B3),(B2,G1),(B2,G2),(B3,G1),(B3,G2),(G1,G2)},样本空间中,共包含10个样本点.设事件A为“抽取的2人中恰有1名女生”,则A={(B1,G1),(B1,G2),(B2,G1),(B2,G2),(B3,G1),(B3,G2)},事件A共包含6个样本点.

从而所以抽取的2人中恰有1名女生的概率为.【点睛】本题考查古典概型概率,考查分层抽样、列举法等基础知识,考查运算求解能力,是基础题.20.10分)设为奇函数,为常数.(1)求的值;(2)证明在区间(1,+∞)内单调递增;(3)若对于区间[3,4]上的每一个的值,不等式>恒成立,求实数的取值范围.参考答案:(1)∵f(-x)=-f(x),∴.

∴,即,∴a=-1.

(2)由(1)可知f(x)=(x>1)记u(x)=1+,由定义可证明u(x)在(1,+∞)上为减函数,∴f(x)=在(1,+∞)上为增函数.(3)设g(x)=-.则g(x)在[3,4]上为增函数.∴g(x)>m对x∈[3,4]恒成立,∴m<g(3)=-.

略21.已知函数.(1)求的值域;(2)设函数,,若对于任意,总存在,使得成立,求实数的取值范围.参考答案:(1)任取x1、x2?[-2,-1),x1<x2Tx1-x2<1,1->0,

Tf(x1)-f(x2)=x1+-(x2+)=(x1-x2)(1-)<0

Tf(x1)<f(x2)Tf(x)在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论