2022年河南省周口市韭园镇高一数学文测试题含解析_第1页
2022年河南省周口市韭园镇高一数学文测试题含解析_第2页
2022年河南省周口市韭园镇高一数学文测试题含解析_第3页
2022年河南省周口市韭园镇高一数学文测试题含解析_第4页
2022年河南省周口市韭园镇高一数学文测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年河南省周口市韭园镇高一数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列四个函数中,以π为最小正周期,且在区间(,π)上单调递减函数的是()A.y=sin2x B.y=2|cosx| C. D.y=tan(﹣x)参考答案:D【考点】H1:三角函数的周期性及其求法;3E:函数单调性的判断与证明.【分析】利用诱导公式,三角函数的周期性和单调性,注意判断各个选项是否正确,从而得出结论.【解答】解:∵y=sin2x的最小正周期为=π,在区间(,π)上,2x∈(π,2π)没有单调性,故排除A;y=2|cosx|的最小正周期为π,在区间(,π)上,2x∈(π,2π)没有单调性,故排除B;y=cos的最小正周期为=4π,故排除C;y=tan(﹣x)=﹣tanx的最小正周期为π,在区间(,π)单调第减,故选:D.2.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期是π,若其图象向右平移个单位后得到的函数为奇函数,则函数y=f(x)的图象()A.关于点(,0)对称 B.关于直线x=对称C.关于点(,0)对称 D.关于直线x=对称参考答案:D【考点】正弦函数的图象.【分析】由周期求出ω=2,故函数f(x)=sin(2x+φ),再根据图象向右平移个单位后得到的函数y=sin(2x﹣+φ]是奇函数,可得φ=﹣,从而得到函数的解析式,从而求得它的对称性.【解答】解:由题意可得=π,解得ω=2,故函数f(x)=sin(2x+φ),其图象向右平移个单位后得到的图象对应的函数为y=sin[2(x﹣)+φ]=sin(2x﹣+φ]是奇函数,又|φ|<,故φ=﹣,故函数f(x)=sin(2x﹣),故当x=时,函数f(x)=sin=1,故函数f(x)=sin(2x﹣)关于直线x=对称,故选:D.3.已知幂函数在(0,+∞)上单调递增,函数g(x)=2x﹣t,?x1∈[1,6)时,总存在x2∈[1,6)使得f(x1)=g(x2),则t的取值范围是()A.? B.t≥28或t≤1 C.t>28或t<1 D.1≤t≤28参考答案:D【考点】幂函数的概念、解析式、定义域、值域.【分析】根据幂函数的定义以及函数的单调性求出f(x)的解析式,分别求出f(x),g(x)的值域,问题转化为[1,36)?[2﹣t,64﹣t),求出t的范围即可.【解答】解:由f(x)是幂函数得:m=0或2,而在(0,+∞)上单调递增,则f(x)=x2,x∈[1,6)时,f(x)∈[1,36),x∈[1,6)时,g(x)∈[2﹣t,64﹣t),若?x1∈[1,6)时,总存在x2∈[1,6)使得f(x1)=g(x2),则[1,36)?[2﹣t,64﹣t),故,解得:1≤t≤28,故选:D.4.若,则等于() A. B. C. D.参考答案:B【考点】平面向量的坐标运算;平面向量坐标表示的应用. 【专题】计算题. 【分析】以和为基底表示,设出系数,用坐标形式表示出两个向量相等的形式,根据横标和纵标分别相等,得到关于系数的二元一次方程组,解方程组即可. 【解答】解:∵, ∴, ∴(﹣1,2)=m(1,1)+n(1,﹣1)=(m+n,m﹣n) ∴m+n=﹣1,m﹣n=2, ∴m=,n=﹣, ∴ 故选B. 【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题等.5.已知向量=(1,2),=(1,0),=(3,4).若λ为实数,(+λ)∥,则λ=()A. B. C.1 D.2参考答案:B【考点】9K:平面向量共线(平行)的坐标表示.【分析】根据所给的两个向量的坐标,写出要用的+λ向量的坐标,根据两个向量平行,写出两个向量平行的坐标表示形式,得到关于λ的方程,解方程即可.【解答】解:∵向量=(1,2),=(1,0),=(3,4).∴=(1+λ,2)∵(+λ)∥,∴4(1+λ)﹣6=0,∴故选B.6.在中,则角A等于(

)A.

B.

C.或

D.或

参考答案:C7.(5分)在下列命题中,正确的个数是()①若||=||,=;②若=,则∥;③||=||;④若∥,∥,则∥. A. 1 B. 2 C. 3 D. 4参考答案:B考点: 平行向量与共线向量.专题: 平面向量及应用.分析: 根据向量相等的概念可以判断①②是否正确;根据相反向量可以判断③是否正确;根据向量平行的概念判断④是否正确.解答: 解:对于①,||=||时,与的方向不一定相同,∴=不一定成立,命题错误;对于②,当=时,∥,命题正确;对于③,向量与是相反向量,∴||=||,命题正确;对于④,当∥,∥时,若=,则与的方向不能确定,∴∥不一定成立,命题错误.综上,正确的命题是②③.故选:B.点评: 本题考查了平面向量的基本概念的应用问题,是基础题目.8.若空间两条直线a和b没有公共点,则a与b的位置关系是(

)A.共面

B.平行

C.异面

D.平行或异面参考答案:D略9.已知集合A{x|x2﹣3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A?C?B的集合C的个数为()A.1 B.2 C.3 D.4参考答案:D【考点】集合的包含关系判断及应用.【专题】集合.【分析】先求出集合A,B由A?C?B可得满足条件的集合C有{1,2,},{1,2,3},{1,2,4},{1,2,3,4},可求【解答】解:由题意可得,A={1,2},B={1,2,3,4},∵A?C?B,∴满足条件的集合C有{1,2},{1,2,3},{1,2,4},{1,2,3,4}共4个,故选D.【点评】本题主要考查了集合的包含关系的应用,解题的关键是由A?C?B找出符合条件的10.函数在闭区间上有最大值4,最小值3,则的取值范围是(

)A.

B.

C.D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.若抛物线的上一点到其焦点的距离为3,且抛物线的焦点是双曲线的右焦点,则p=_______,a=______.参考答案:

4

【分析】利用抛物线的定义可解得p的值;利用双曲线中可解得a的值.【详解】抛物线的上一点到其焦点的距离为3所以解得p=4抛物线的焦点是双曲线的右焦点解得a=【点睛】本题考查了抛物线和双曲线的性质,属于基础题型,解题中要熟练掌握和应用双曲线和抛物线的性质.12.对于下列语句(1)

(2)

(3)

(4)其中正确的命题序号是

。(全部填上)参考答案:(2)(3)13.已知向量,,且与垂直,则x的值为______.参考答案:【分析】根据与垂直即可得出,进行数量积的坐标运算即可求出x的值.【详解】;;.故答案为:.【点睛】本题考查向量垂直的充要条件,以及向量数量积的坐标运算,属于基础题.14.已知△FOQ的面积为S,且.若,则的夹角θ的取值范围是.参考答案:(45°,60°)【考点】9P:平面向量数量积的坐标表示、模、夹角.【分析】由向量的数量积公式得到与的乘积,把面积转化为含有角OFQ正切的表达式,由三角形面积的范围得到角OFQ正切值的范围,从而得到答案.【解答】解:∵,∴=,得:,由三角形面积公式,得:S=,∴S=﹣=﹣,∵,∴,,∴120°<∠OFQ<135°,而的夹角与∠OFQ互为补角,∴夹角的取值范围是:(45°,60°).15.如图,等腰梯形的底边长分别为8和6,高为7,圆为等腰梯形的外接圆,对于平面内两点,(),若圆上存在点,使得,则正实数的取值范围是

.参考答案:[2,8]16.设则

.

参考答案:略17.从[0,1]之间选出两个数,这两个数的平方和小于0.25的概率是_______.参考答案:

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.

已知全集,集合,集合是函数的定义域,集合.

(Ⅰ)求集合(结果用区间表示);

(Ⅱ)若,求实数a的取值范围.参考答案:解:(Ⅰ),----2分,--------------------------4分

所以----6分(Ⅱ)由(Ⅰ)知,--------7分

①当C=时,满足,此时,得------9分

②当C≠时,要,则解得---11分

由①②得,为所求-----------------------------------12分19.过点的直线交轴、轴正半轴于两点,求使:(1)△面积最小时的方程;(2)最小时的方程.

参考答案:解

方法一

设直线的方程为

(a>2,b>1),由已知可得.

(1)∵2≤=1,∴ab≥8.∴S△AOB=ab≥4.

当且仅当==,即a=4,b=2时,S△AOB取最小值4,此时直线l的方程为=1,即x+2y-4=0.(2)由+=1,得ab-a-2b=0,变形得(a-2)(b-1)=2,=·=≥.

当且仅当a-2=1,b-1=2,即a=3,b=3时,|PA|·|PB|取最小值4.此时直线l的方程为x+y-3=0.

方法二

设直线l的方程为y-1=k(x-2)(k<0),则l与x轴、y轴正半轴分别交于A、B(0,1-2k).(1)S△AOB=(1-2k)=×≥(4+4)=4.当且仅当-4k=-,即k=-时取最小值,此时直线l的方程为y-1=-(x-2),即x+2y-4=0.·

(2)==≥4,当且仅当=4k2,即k=-1时取得最小值,此时直线l的方程为y-1=-(x-2),即x+y-3=0.略20.设与分别是实系数方程和的一个根,且

,求证:方程有仅有一根介于和之间。参考答案:解析:令由题意可知因为∴,即方程有仅有一根介于和之间。21.如图,有一块矩形草地,要在这块草地上开辟一个内接四边形建体育设施(图中阴影部分),使其四个顶点分别落在矩形的四条边上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,设AE=x,阴影部分面积为y.(1)求y关于x的函数关系式,并指出这个函数的定义域;(2)当x为何值时,阴影部分面积最大?最大值是多少?参考答案:∴y=-2x2+(a+2)x,函数的定义域为

(2)对称轴为x=,又因为a>2,所以当1<,即2<a<6时,则x=时,y取最大值。当≥2,即a≥6时,y=-2x2+(a+2)x,在0,2]上是增函数,则x=2时,y取最大值2a-4.

综上所述:当2<a<6时,x=时,阴影部分面积最大值是;当a≥6时,x=2时,阴影部分面积最大值是2a-4.略22.(2016秋?建邺区校级期中)对于两个定义域相同的函数f(x)、g(x),若存在实数m,n,使h(x)=mf(x)+ng(x),则称函数f(x)是由“基函数f(x),g(x)”生成的.(1)若f(x)=x2+3x和g(x)=3x+4生成一个偶函数h(x),求h(2)的值;(2)若h(x)=2x2+3x﹣1是由f(x)=x2+ax和g(x)=x+b生成,其中a,b∈R且ab≠0,求的取值范围;(3)利用“基函数f(x)=log4(4x+1),g(x)=x﹣1)”生成一个函数h(x),使得h(x)满足:①是偶函数,②有最小值1,求h(x)的解析式.参考答案:【考点】函数解析式的求解及常用方法;函数的最值及其几何意义.【专题】新定义;待定系数法;函数的性质及应用.【分析】(1)(1)先用待定系数法表示出偶函数h(x),再根据其是偶函数这一性质得到引入参数的方程,求出参数的值,即得函数的解析式,代入自变量求值即可.(2)设h(x)=2x2+3x﹣1=m(x2+ax)+n(x+b),展开后整理,利用待定系数法找到a,b的关系,由系数相等把a,b用n表示,然后结合n的范围求解的取值范围;(3)设h(x)=m(log4(4x+1))+n(x﹣1),h(x)是偶函数,则h(﹣x)﹣h(x)=0,可得m与n的关系,h(x)有最小值则必有n<0,且有﹣2n=1,求出m和n值,可得解析式.【解答】解:(1)f(x)=x2+3x和g(x)=3x+4生成一个偶函数h(x),则有h(x)=mx2+3(m+n)x+4n,h(﹣x)=mx2﹣3(m+n)x+4n=mx2+3(m+n)x+4n,∴m+n=0,故得h(x)=mx2﹣4m,∴h(2)=0.(2)设h(x)=2x2+3x﹣1=m(x2+ax)+n(x+b)=mx2+(am+n)x+nb.∴m=2,am+n=3,nb=﹣1,则a=,b=.所以:==,∵a,b∈R且ab≠0,∴的取值范围为[﹣,0)∪(0,+∞).(3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论