版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
5.1.2弧度制本节课是普通高中教科书人教A版必修第一册第五章第一节第二课,本节课起着承上启下的作用:在前面学生在初中已经学过角的度量单位“度”,并且上节课学了任意角的概念,将角的概念推广到了任意角;本节课作为三角函数的第二课时,该课的知识还是后继学习任意角的三角函数等知识的理论准备,因此本节课还起着启下的作用。通过本节弧度制的学习,我们知道实数与角之间一一对应的关系,而且在弧度制下的弧长公式与扇形面积公式有了更为简单形式。另外弧度制为今后学习三角函数带很大方便。课程目标学科素养A.理解角集与实数集的一一对应,熟练掌握角度制与弧度制间的互相转化;B.能灵活运用弧长公式、扇形面积公式解决问题;C.找出弧度与角度换算的方法,领悟从特殊到一般的思想方法。1.数学抽象:角集与实数集间的一一对应;2.逻辑推理:弧长公式及扇形的面积公式;3.数学运算:求扇形的弧长和面积;4.直观想象:由函数的图象表示函数;5.数学模型:由实际问题构造合理的函数模型。1.教学重点:角度制与弧度制间的互相转化,弧长公式及扇形的面积公式的推导与证明;2.教学难点:能灵活运用弧长公式、扇形面积公式解决问题。多媒体教学过程教学设计意图核心素养目标复习回顾,温故知新1.在平面几何里,度量角的大小用什么单位?【答案】角度制的单位有:度、分、秒。2.1°的角是如何定义的?【答案】规定:圆周1/360的圆心角称作1°角。这种用度做单位来度量角的制度叫做角度制.日常生活中,度量长度可用不同的单位,如:一张课桌长80厘米,也可以说长0.8米,显然两种结果出现了不同的数值。在数学和其他科学研究中还经常用到另一种度量角的制度—弧度制,它是如何定义呢?二、探索新知探究:在圆内,圆心角的大小和半径大小有关系吗?角度为300、600的圆心角,半径r=1,2,3时,(1)分别计算相对应的弧长l(2)分别计算对应弧长与半径之比思考:通过上面的计算,你发现了什么规律?【答案】①.圆心角不变,比值不变;比值的大小与所取的圆的半径大小无关;②圆心角改变,比值改变;比值的大小只与圆心角的大小有关;1.弧度的概念把长度等于半径长的弧所对的圆心角叫做1弧度(radian)的角.弧度制:这种以弧度作为单位来度量角的单位制叫做弧度制,它的单位是弧度,单位符号是rad.约定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为0.思考1:圆的半径为r,弧长分别为2r、-3r,则它们所对圆心角的弧度数是多少?【答案】2rad,-3rad.思考2:如果半径为r的圆的圆心角α所对的弧长为l,那么,角α的弧度数的绝对值如何计算?【答案】结论:圆心角AOB的弧度数等于它所对的弧的长与半径长的比的绝对值。2.角度与弧度的换算思考3:一个周角以度为单位度量是多少度,以弧度为单位度量是多少弧度?由此可得角度与弧度有怎样的换算关系?【答案】360º,。思考4:根据上述关系,1°等于多少弧度,1rad等于多少度?【答案】把67°30′化成弧度。【解析】因为所以。把下列各角的弧度化为度数。【解析】(1)注:角度制与弧度制互化时要抓住180°=rad这个关键。注:常规写法①用弧度数表示角时,常常把弧度数写成多少的形式,不必写成小数.②用弧度制表示角时,“弧度”二字或“rad”通常略去不写,面只写该角所对应的弧度数.③弧度与角度不能混用.即不能出现这样的形式:。填写下列表中特殊角的弧度数或度数。角度00300600120013502700弧度角的概念推广后,角与实数之间建立了一一对应关系,任意角的集合实数集R例3.利用弧度制证明下列扇形的公式:(1)。(其中R是扇形的半径,是弧长,,S是扇形的面积)。通过复习初中所学角的单位及定义,类比长度的不同度量制,用类比的方法、联系的观点引入本节新课。建立知识间的联系,提高学生概括、类比推理的能力。通过探究与思考,寻找弧长、半径与圆心角之间的关系,进而得弧度的定义,提高学生的解决问题、分析问题的能力。通过思考,进一步巩固弧度制的定义,提高学生分析问题、概括能力。通过思考,归纳弧度与角度的互化。提高学生分析问题、概括能力。通过例题学会角度与弧度的转化,提高学生解决问题的能力。通过例题总结弧度制下的扇形的弧长公式、扇形的面积公式,提高学生的观察、概括能力。三、达标检测1.正确表示终边落在第一象限的角的范围的是()A.eq\b\lc\(\rc\)(\a\vs4\al\co1(2kπ,2kπ+\f(π,2)))(k∈Z)B.eq\b\lc\(\rc\)(\a\vs4\al\co1(kπ,kπ+\f(π,2)))(k∈Z)C.eq\b\lc\[\rc\](\a\vs4\al\co1(2kπ,2kπ+\f(π,2)))(k∈Z)D.eq\b\lc\[\rc\)(\a\vs4\al\co1(kπ,kπ+\f(π,2)))(k∈Z)【解析】B中k=1时为eq\b\lc\(\rc\)(\a\vs4\al\co1(π,\f(3,2)π))显然不正确;因为第一象限角不含终边在坐标轴的角故C、D均错,只有A正确.【答案】A2.与30°角终边相同的角的集合是()A.eq\b\lc\{\rc\}(\a\vs4\al\co1(α\b\lc\|(\a\vs4\al\co1(α=k·360°+\f(π,6))),k∈Z))B.{α|α=2kπ+30°,k∈Z}C.{α|α=2k·360°+30°,k∈Z}D.eq\b\lc\{\rc\}(\a\vs4\al\co1(α\b\lc\|(\a\vs4\al\co1(α=2kπ+\f(π,6),))k∈Z))【解析】∵30°=30×eq\f(π,180)rad=eq\f(π,6)rad,∴与30°终边相同的所有角可表示为α=2kπ+eq\f(π,6),k∈Z,故选D.【答案】D3.在半径为10的圆中,240°的圆心角所对弧长为()A.eq\f(40,3)π B.eq\f(20,3)πC.eq\f(200,3)π D.eq\f(400,3)π【解析】240°=240×eq\f(π,180)rad=eq\f(4,3)πrad,∴弧长l=|α|·r=eq\f(4,3)π×10=eq\f(40,3)π,选A.【答案】A4.将-1485°化成2kπ+α(0≤α<2π,k∈Z)的形式为_______.【解析】由-1485°=-5×360°+315°,所以-1485°可以表示为-10π+eq\f(7,4)π.【答案】-10π+eq\f(7,4)π5.一个扇形的面积为1,周长为4,求该扇形圆心角的弧度数.【解析】设扇形的半径为R,弧长为l,圆心角为α,则2R+l=4.①由扇形的面积公式S=eq\f(1,2)lR,得eq\f(1,2)lR=1.②由①②得R=1,l=2,∴α=eq\f(l,R)=2rad.∴扇形的圆心角为2rad.通过练习巩固本节所学知识,通过学生解决问题的能力,感悟其中蕴含的数学思想,增强学生的应用意识。四、小结1.1弧度角的定义;2.角度制与弧度制的联系与区别;3.弧长公式与扇形的面积公式;五、作业习题5.15.(2)、(4),6.(1),9题通过总结,让学生进一步巩固本节所学内容,提高概括能力,提高学生的数学运算能力和逻辑推理能力。由于弧度制是一个新的角单位制的概念,主要是让学生理解弧度制的意义,重点是让学生能正确进行弧度制与角度制的换算,并理解任意角的集合与实数集之间建
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024影视制作合同4篇
- 运营管理合作的协议书范本 3篇
- 2024年度健身俱乐部加盟与合作合同2篇
- 2024版工厂人力资源管理与培训合同2篇
- 养羊合同书协议书
- 广告预算课件
- 护理中感人的故事
- 司机安全培训
- 端午活动计划书
- 《工程险条款》课件
- 新华通讯社招聘笔试真题2023
- 《追求有效教学》课件
- 专题04 整本书阅读(题型归纳、知识梳理)(考点串讲)-七年级语文上学期期末考点大串讲(统编版2024·五四学制)
- 《跨境电商直播(双语)》课件-4.1跨境直播脚本设计
- 教师职业病教育
- 2024年云南省公务员录用考试《行测》真题及答案解析
- 2024-2030年中国粉末冶金制造行业“十四五”发展动态与发展方向建议报告
- 2024-2030年中国小苏打行业发展前景预测及投资潜力分析报告
- 17 难忘的泼水节(第一课时)公开课一等奖创新教学设计
- 一年级数学20以内加减法口算混合练习题
- 矿山安全生产培训
评论
0/150
提交评论